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Introduction

Algebra can essentially be considered as doing computation similar to that of arithmetic
with non-numerical mathematical objects.
Initially, these objects represented either numbers that were not yet known (unknowns) or
unspecified numbers (indeterminate or parameters) allowing one to state and prove prop-
erties that are true no matter which number are involved.
For example, in the quadratic equation

ax2 +bx + c = 0

a, b, c are indeterminates and x is the unknown. Solving this equation amounts to com-
puting with the variables to express the unknowns in terms of the indeterminates. Then,
substituting any numbers for the indeterminates, gives the solution of a particular equation
after a simple arithmetic computation.
As it developed, algebra was extended to other non-numerical objects, like vectors, matri-
ces, polynomials.
Then the structural properties of these non-numerical objects were abstracted to define al-
gebraic structures like groups, rings, fields and algebras.
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Chapter I

Ring theory

1 Generality around rings

1.1 Definitions and first examples

Definition 1.1.1. 1. A non empty set is said to be a ring if there are in R two operations,
denoted by + and · respectively such that:

(a) R is an abelian group under the operation +. That is, for any a, b and c ∈ R

i. a +b ∈ R,

ii. a +b = b +a,

iii. (a +b)+ c = a + (b + c),

iv. there is an element 0 in R such that a +0 = a, for any a ∈ R,

v. there is an element −a ∈ R such that a + (−a) = 0.

(b) R is closed under an associated operation. That is, for any a, b, c ∈ R,

i. a.b ∈ R,

ii. a · (b · c) = (a ·b) · c.

(c) The multiplication is distributive under the addition. That is, for any a, b, c ∈ R,

i. a.(b + c) = a.b +a.c,

ii. (b + c) ·a = b ·a + c ·a.

2. If moreover, there is an element 1 ∈ R such that a ·1 = 1 ·a = a for any a ∈ a, we say that
R is a ring with unit element.

3. If the multiplication of R is such that a ·b = b · a, for every a, b ∈ R, we say that R is a
commutative ring.

Example 1.1.2. 1. Z,Q, C together with usual addition and multiplication are a commu-
tative ring with unit elements.

2. 2Z is a commutative ring without unit element.

7



3. The set M2,2(Q) of the square matrices of order 2 overQ together with the usual addition
and multiplication of matrices is a non-commutative ring with unit element.

From the definition of ring, we obtain the easy following lemma which permits to com-
pute in rings but BBE CAREFUL ab is not necessarily equal to ba and the division might
not exists:

Lemma 1.1.3. If R is a ring then for all a, b ∈ R,

1. a ·0 = 0 ·a = 0,

2. a(−b) = (−a)b =−(ab),

3. (−a)(−b) = ab.

If in addition, R has a unit element then,

4. (−1)a =−a,

5. (−1)(−1) = 1.

Proof. 1. If a ∈ R, then a ·0 = a · (0+0) = a ·0+a ·0, by distributivity. Then, since (R,+) is
a group, a ·0 = a ·0−a ·0 = 0. We can do the same to prove that 0 ·a = 0.

2. To show that a(−b) =−(ab), we have to prove that ab+a(−b) = 0. But by the distribu-
tivity property,ab +a(−b) = a(b + (−b)) = a.0 = 0, by 1..

3., 4. and 5. are special cases of 2..

Example 1.1.4. Compute (x + y)2. We have:

(x + y)2 = (x + y) · (x + y) = x · (x + y)+ y · (x + y) = x · x +x · y + y · x + y · y = x2 +x y + y x + y2

Definition 1.1.5. A subring (R ′,+, ·) of a ring (R,+, ·) is such that:

1. (R ′,+) is a subgroup of (R,+),

2. It is closed under the multiplication. That is, for any a, b ∈ R ′, a ·′ b ∈ R ′.

Remark I.1. BIt is easier to check that a ring is a subring of a well-know ring.

1.2 Ideals

Definition 1.2.1. A non-empty subset I of some ring R is said to be a right (reps. left) ideal of
R if

1. I is a subgroup of R under addition,

2. For every i ∈ I and r ∈ R, i r ∈ I (resp. r i ∈ I ).

An (two-sided) ideal is both left and right ideal.
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Remark I.2. on a ring R different from the zero ring, there are always at least two ideals the
zero-ideal {0} and R.

Example 1.2.2. The ideals of Z are exactly, using group theory, of the form nZ, for n ∈Z.

Definition 1.2.3. An ideal of some ring R is said to be principal if it is of the form aR or Ra,
for some a ∈ R. If R is commutative, we write (a) such ideal.

Definition 1.2.4. An ideal M 6= R of some ring R is a maximal ideal of R if whenever I is an
ideal of R such that M ⊂ I ⊂ R then either R = I or M = I .

Example 1.2.5. The ideals maximal of Z are exactly the pZ, where p is a prime number. In
fact, let p be a prime and mZ an arbitrary ideal of Z that pZ ⊂ mZ. Then, in particular,
p ∈ mZ, thus there is n ∈ Z such that p = mn. Since p is prime, this implies that m = p and
then pZ= mZ or m = 1 and then Z= mZ. So, that pZ is maximal. Let now pZ be a maximal
ideal and suppose by contradiction that p is not a prime. That is, there are non unit elements
of R, a and b such that p = ab. But then pZ⊂ aZ. By maximality, or aZ= pZ, then p|a and
a|p thus a = p, or aZ = Z and a = 1 thus b = p. As a consequence, p is prime. So, maximal
ideals of Z correspond exactly to the notion of prime number. This is not necessarily true for a
general ring.

1.3 Homomorphisms

Definition 1.3.1. A mapping φ from a ring (R,+, ·) to a ring (R ′,+′, ·′) is said to be a homo-
morphism of rings if for any a, b ∈ R, we have:

1. φ(a +b) =φ(a)+′φ(b),

2. φ(ab) =φ(a) ·′φ(b).

If R = R ′, φ is an endomophism.

Directly from the definition, we obtain the following result:

Lemma 1.3.2. If φ is a homomorphism from R to R ′ then:

1. φ(0) = 0′,

2. φ(−a) =−φ(a) for every a ∈ R.

Remark I.3. From the definition and the previous lemma,

1. φ is a group homomorphism.

2. BIf R has a unit 1 and R ′ a unit 1′, we do not have necessarily that φ(1) = 1′, unless for
example,

(a) R ′ is an integral domain.

(b) R ′ is an arbitrary ring but φ is onto.
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Lemma 1.3.3. If φ is a homomorphism from R into R ′, then its kernel I (φ) is an ideal of R.

Proof. By group theory, I (φ) is a subgroup of R. Let a ∈ I (φ), r ∈ R, then φ(a) = 0 so that
φ(a · r ) = φ(a) ·′ φ(r ) = 0 ·′ φ(r ) = 0. Then a · r ∈ I (φ). Similarly, r · a ∈ I (φ). So, I (φ) is an
ideal.

Example 1.3.4. 1. Let φ : R → R ′ be a map defined by φ(a) = 0, for any a ∈ R. Trivially, φ
is a homomorphism and I (φ) = R. φ is called the zero-homomorphism.

2. Let φ : R → R be a map defined by φ(x) = x, for any x ∈ R. Trivially, φ is a homomor-
phism and I (φ) = (0). φ is called the identity homomorphism of R.

3. Let Z[
p

2] = {m +n
p

2|m,n ∈ Z} ⊂ R It is a ring for usual addition and multiplication
on real numbers. (Verify!) Let φ : Z[

p
2] → Z[

p
2] be a map defined by φ(m +n

p
2) =

m −n
p

2. φ is a homomorphism and I (φ) = (0).

Definition 1.3.5. 1. A homomorphism from R into R ′ is said to be an isomorphism if it is
one to one mapping. If R = R ′ then an isomorphism is called an automorphism.

2. Two rings are said to be isomorphic if the is an isomorphism of one into the other.

1.4 Quotient

Definition 1.4.1 (Proposition). Given an ideal U of a ring.

1. Let R/U be the set of all the distinct cosets a +U , for a ∈ R, of U in R (obtained by
considering U as a subgroup of R under the addition). R/U is a ring called the quotient
ring where

(a) the addition + is defined by (a +U )+ (b +U ) = (a +b)+U , where a, b are in R,

(b) the multiplication . is defined by (a +U )(b +U ) = (ab)+U

2. If R is commutative, so is R/U (The converse is false!).

3. If 1 is a unit of R, then 1+U is a unit of R/U .

4. There is a homomorphism φ : R → R/U given by φ(a) = a +U , for any a ∈ R whose
kernel is exactly U .

Proof. (R/U ,+) is a group, using group theory. . is well defined. That is, for a′ ∈ R an other
representative of a+U that is, a′+U = a+U and b′ ∈ R an other representative of b+U that
is, b′+U = b+U , then a′b′+U = ab+U . Since a+U = a′+U , then there is u1 ∈U such that
a = a′+u1 and since b +U = b′+U , then there is u2 ∈U such that b = b′+u2. Then,

ab = a′b′+u1b′+a′u2 +u1u2

with u1b′+a′u2 +u1u2 ∈U since U is an ideal. Then a′b′+U = ab +U . The student might
check easily that all the ring axioms are verified.
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Referring to group theory for the proof, we mention the following lemma:

Theorem 1.4.2. Let R, R ′ be rings and φ a surjective homomorphism of R to R ′ with kernel
U . Then, R ′ is isomorphic to R/U . Moreover, there is a one to one correspondence Φ between
the set of ideals of R ′ and the set of ideals of R which contains U . For W ′ an ideal of R ′, we
set Φ(W ′) to be the ideal {x ∈ R|φ(x) ∈ W ′} and for an ideal W of R which contains U , we set
Φ−1(W ) =W /I . Moreover, R/φ(W ) is isomorphic to R ′/W ′

Example 1.4.3. Let n ∈Z. Define φ :Z→Z/nZ by φ(a) = ā which is the class of a modulo n.
It is easy to check that φ is an homomorphism and that the kernel I (φ) of φ consist of al the
multiples of n.

2 Important classes of rings

2.1 Integral rings

Definition 2.1.1. If R is a commutative ring then a 6= 0 ∈ R is said to be a zero divisor if there
is a, b ∈ R such that b 6= 0 and ab = 0.

Example 2.1.2. Let Z/6Z be the set of integers mod 6 under the addition and the multiplica-
tion mod 6. If we denote the elements in Z/6Z by 0̄, 1̄, 2̄, ...., 5̄, one sees that 2̄3̄ = 0̄, yet 2̄ 6= 0̄
and 3̄ 6= 0̄. Thus 2̄ and 3̄ are zero-divisors.

Definition 2.1.3. A commutative ring is an integral domain if it has no zero divisors.

Definition 2.1.4. Let R be an integral domain.

1. We say that R has n-torsion n > 0 if there is an element a 6= 0 ∈ R such that na = 0 and
ma 6= 0 for 0 < m < n.

2. The characteristic is 0 if pa = 0, for every a ∈ R if and only p = 0 or equals the smallest
integer p such that pa = 0, for any a ∈ R, if it exists such integers (p is then automati-
cally prime, any a 6= 0 ∈ R are p-torsions). If the characteristic is non-zero, then R is of
finite characteristic.

Example 2.1.5. R, Z,Q are integral domains.

2.2 Division ring

Definition 2.2.1. A ring is said to be a division ring if its non-zero elements form a group un-
der the multiplication. We denote a−1 the inverse of an element a ∈ R, for the multiplication.

11



2.3 Fields

Definition 2.3.1. 1. A field is a commutative integral division ring.

2. A field with finite number of element is called a finite field.

Example 2.3.2. C,Q and the set of the integers mod 7 are fields.

Exercise 2.3.3. Let
Q(

p
2) := {a +b

p
2 : a,b ∈Q} ⊂R

Prove that Q(
p

2) is a subring of R. Show, by writing an explicit formula, that every nonzero
element a +b

p
2 of Q(

p
2) has a multiplicative inverse in Q(

p
2) (and hence that Q(

p
2) is a

field.)

Solution: Q(
p

2) is a subring of R

1. Identity: 0 = 0+0
p

2 ∈Q[
p

2]

2. Inverse: If u ∈Q[
p

2] then u = a+b
p

2 for some a,b ∈Q so −u = (−a)+(−b)
p

2 ∈Q[
p

2].

3. Sum: If u, v ∈Q[
p

2] then u = a+b
p

2, v = c+d
p

2 so u+v = (a+c)+(b+d)
p

2 ∈Q[
p

2].

4. Product: If u, v ∈Q[
p

2] then u = a +b
p

2, v = c +d
p

2 so

uv = (ac +2bd)+ (ad +bc)
p

2

To explicit an inverse, we notice that (a +b
p

2)(a −b
p

2) = a2 −2b2. Since
p

2 is irrational,
a2 − 2b2 6= 0 for any pair a, b of rational numbers not both zero. Hence, we can divide by
a2 −2b2 to get (

a +b
p

2
)( a

a2 −2b2
− b

a2 −2b2

p
2
)= 1,

i.e., (
a +b

p
2
)−1 = c +d

p
2, with c := a

a2 −2b2
, d :=− b

a2 −2b2

c, d are rationals so
(
a +b

p
2
)−1 ∈Q[

p
2].

We will now establish some criterium to be a field. We recall first the following very
simple minded principle

Lemma 2.3.4 (the Pigeon Hole principle). We always have the two equivalent assertions:

1. If n objects are distributed over m places and if n > m, then some place receives at least
two objects.

2. If n object are distributed over n places in such a way that no places receive more than
one object, then each place receives exactly one object.
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As a consequence, we have:

Lemma 2.3.5. A finite integral domain is a field.

Proof. Let D be a finite integral domain. In order to prove that D is a field, we have to prove
that:

1. There is a unit element 1 ∈ D such that a.1 = a, for any a ∈ D .

2. For every element a 6= 0 ∈ D , there is an inverse element b ∈ D such that ab = 1.

In fact, let x1, .. , xn be all elements of D and a 6= 0 ∈ D . The element x1a, ..., xn a are all in D
and all distinct. Indeed, for i 6= j , suppose by contradiction that xi a = x j a , then (xi −x j )a =
0 and (xi −x j ) 6= 0 and a 6= 0 which is impossible since D is an integral ring. Thus, xi a 6= x j b.
By the pigeon hole principle, every y ∈ D can be written as xi a for some xi . In particular,
there is an xi0 such that a = xi0 a = axi0 (D is commutative). Let’s prove that xi0 is the unit
element. Let y ∈ D , with y 6= 0, there is a xi such that y = xi a and y xi0 = (xi a)xi0 = xi (axi0 ) =
xi a = y . This proves that xi0 = 1. Now, since 1 ∈ D , there is x j such that 1 = x j a = ax j and x j

is the inverse of a.

Corollary 2.3.6. If p is a prime, the ring Z/pZ of the integers modulo p is a field.

Proof. Since Z/pZ is finite, by the previous lemma, it is enough to prove that it is integral.
Let then ā and b̄ ∈Z/pZ with a, b ∈ {0, ..., p} representatives of the classes ā and b̄. Suppose
that ab ≡ 0mod p then p|ab. This implies that either p|a or p|b. In other words, or ā = 0 or
b̄ = 0. So, Z/pZ has no zero divisor.

Remark I.4. We can have an infinity of finite field, but not all finite field are of the formZ/pZ
with p prime.

Lemma 2.3.7. Let R be a commutative ring with unit element whose only ideal are (0) and R
itself the R is a field.

Proof. Let a 6= 0 ∈ R. Consider the set Ra = {xa|x ∈ R}. We can easily check that Ra is an
ideal of R. By assumption, Ra = (0) or Ra = R. But a 6= 0 and a = 1.a ∈ Ra, then Ra 6= (0).
Thus, Ra = R. In particular, there is b ∈ R, such that ba = 1.

Theorem 2.3.8. If R is a commutative ring with unit element and M is an ideal of R then M
is a maximal ideal if and only if R/M is a field.

Proof. We use in the following the 1.1 correspondence ψ of Theorem 1.4.2.

1. Suppose that M is an ideal such that R/M is a field, R/M being a field has only (0)
and R/M as ideal so R as also only 2 ideals containing M which are M and R. So M is
maximal.

2. If M is maximal, there is only M and R as ideal containing M so there is just two ideal
on R/M which must be (0) and R/M and R/M is a field by the previous lemma.
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2.4 Principal ideal rings

Definition 2.4.1. An integral domain R with unit element is a principal ideal ring, if every
ideal in R is of the form (a) for some a ∈ R.

Example 2.4.2. Z is a principal ideal ring.

2.5 Euclidean ring

2.5.1 Definition

Definition 2.5.1. An integral domain R is said to be a Euclidean ring if for every a 6= 0 in R,
there is defined a non negative integer d(a) such that:

1. ∀a, b ∈ R, both non-zero d(a) ≤ d(ab),

2. ∀a, b ∈ R both non zero, there exist t , r ∈ R such that a = tb + r where either r = 0 or
d(r ) < d(b).

Remark I.5. BWe do not assign a value to d(0).

Example 2.5.2. Z is a Euclidean ring where d is the usual absolute value.

Theorem 2.5.3. Euclidean rings have a unit element and they are principal ideal rings.

Proof. Let R be an Euclidean ring.

1. We prove first that all ideals of R are principal. Let I be an ideal of R. If I = (0) there I
is principal, otherwise there is a 6= 0 ∈ R. Pick a0 ∈ R such that d(a0) is minimal (since
d takes on non-negative values thus it is always possible. Let b ∈ I , then by Euclidean
rings property, there is t , r ∈ R such that a = t a0 + r where either r = 0 or d(r ) < d(a0).
Since a0 ∈ I , a ∈ I and I is an ideal, we have that r = a − t a0 ∈ I and from minimality
property of a0, we have that r = 0, a = t a0 thus I = (a0).

2. We prove now that R has a unit element. R is clearly an ideal then R = (b) for some
b ∈ R, and then there is also e ∈ R such that b = be. Take now an a ∈ R, there is a x ∈ R
such that a = xb. For this, we obtain ae = (xb)e = x(bc) = xb = a. Thus, e is seen to be
the required unit.

2.5.2 Divisibility theory for Euclidean rings

Definition 2.5.4. If a 6= 0 and b are in a commutative ring R then a is said to divide b if there
exist a, c ∈ R such that b = ac. We write a|b when a divide b and a - b when a does not divide
b.

Remark I.6. One can check easily the following properties.
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1. If a|b and b|c then a|c,

2. If a|b and a|c then a|(b ± c),

3. If a|b then a|bx, for any x ∈ R.

Definition 2.5.5. Let R be a commutative ring. If a, b ∈ R, then d ∈ R is said to be the greatest
common divisor of a and b if

1. d |a and d |b,

2. whenever c|a and c|b then c|d.

We write d = (a,b).

Lemma 2.5.6. Let R be an euclidean ring then any two elements a and b ∈ R have a greatest
common divisor d. Moreover, d =λa +µb, for some λ, µ ∈ R.

Proof. Let I := {r a+sb|r, s ∈ R}, one can easily check that I is an ideal. Since R is a Euclidean
ring, it is in particular a principal ideal ring and there is d ∈ A such that I = (d), in particular,
there are λ, µ ∈ R such that d = λa +µb. Since Euclidean rings have unit element, one can
write a = 1.a+0.b ∈ I and b = 0.a+1.b ∈ I so that, d |a and d |b. Moreover, if c|a and c|b then
c|λa +µb = d . As a consequence, d = (a,b) as required.

Definition 2.5.7. Let R be a commutative ring with unit element. An element a ∈ R is a unit
if there exists an element b ∈ R such that ab = 1.

Remark I.7. BDo not confuse a unit with a unit element! A unit in a ring is an element
whose inverse is also in the ring.

Lemma 2.5.8. Let R be an integral domain with a unit element and suppose that for a, b ∈ R
both a|b and b|a. Then a = ub where u is a unit in R.

Proof. Since a|b, b = xa for some x ∈ R and since b|a, a = yb for some y ∈ R. Thus b =
x(yb) = (x y)b, so, b(1− x y) = 0. Since R is an integral domain and b 6= 0 then 1− x y = 0 and
1 = x y . y is thus a unit and a = yb.

Definition 2.5.9. Let R be a commutative ring with unit element. Two elements a, b ∈ R are
said to be associates if b = ua for some unit u ∈ R.

Lemma 2.5.10. Let R be a Euclidean ring and a, b ∈ R, if b 6= 0 is not a unit in R then d(a) <
d(ab).

Proof. Consider the ideal I = (a) = {xa|x ∈ R} of R. By property of Euclidean ring, we have
d(a) ≤ d(xa), for x 6= 0 ∈ R. By the proof of Theorem 2.5.3, if d(a) = d(ab), we have ab
minimal and I = (ab), then a = abx, but then since E is integral, bx = 1 and b is a unit, this
contradict the assumption.

Definition 2.5.11. In a Euclidean ring R, a non-unit π is said to be a prime element of R if
whenever π= ab where a, b are in R then one of a or b are a unit.

15



Remark I.8. Let a ∈ R. If π is a prime element and π - a then (a,π) = 1.

Lemma 2.5.12. Let R be a Euclidean ring such that for a, b, c ∈ R, a|bc but (a,b) = 1 then a|c.

Proof. By Bezout lemma, there are λ, µ ∈ R such that λa +µb = 1. So multiplying by c, we
obtain λac +µbc = c. Now, a|λac, always and a|µbc, since a|bc by assumption; therefore
a|(λac +µbc) = c.

Lemma 2.5.13. If π is a prime element in the Euclidean ring R and π|ab where a, b ∈ R, then
π divides at least one of a or b.

Proof. Suppose that π - a then (π, a) = 1. Applying the previous lemma, π|b.

Corollary 2.5.14. If π is a prime element in the Euclidean ring R and π|a1...an then π divides
at least one a1, ... , an .

Euclidean rings have the unique factorization on prime property.

Theorem 2.5.15 (Factorization theorem). Every non-zero element of an Euclidean ring R can
be uniquely written (up to associates) as a product of prime elements or is a unit.

Proof. 1. Existence: By induction on d(a). If d(a) = d(1) then a is a unit in R. Indeed,
otherwise d(1) < d(1.a) and the lemma is proved. We assume that the lemma is true
for all element x ∈ R such that d(x) < d(a). Let prove it for a. If a is a unit or prime,
there is nothing to prove, if it is not a unit nor prime, there is b and c ∈ R which are
not units, then d(b) < d(bc) = d(a) and d(c) < d(bc) = d(a). Using the induction
hypothesis, we can write b = π′

1...π′
n and c = π1...πm where the π′’s and the π’s are

prime. As a consequence, a =π′
1...π′

nπ1...πm .

2. Unicity: Let a =π1...πm =π′
1...π′

n be two factorization into primes. Since π1|π1...πm =
π′

1...π′
n , then π1|p ′

i , for some i but π′
i and π1 are prime, so they are associates. Repeat-

ing this argument we prove unicity (up to associates).

Lemma 2.5.16. The ideal A = (a0) is maximal ideal of the Euclidean ring R if and only if a0

is a prime element of R.

Proof. If a0 is not a prime element, then a0 = bc, b, c non-zero elements of R and non units.
Then, (a0) ⊂ (b). If (b) = R, 1 ∈ B then 1 = xb, so b is a unit and this contradicts the as-
sumption. If A = (b), b ∈ (a0), b = a0r = bcr so c is a unit and this contracdicts also the
assumption. As a consequence, A is not maximal. Conversely, suppose that a0 is a prime
element of R, let U be an ideal of R such that A = (a0) ⊂ U ⊂ R. Since R is Euclidean so in
particular a principal ideal ring, then U = (u0). Since a0 ∈ A ⊂U = (u0), a0 = xu0, for some
x ∈ R. But, a0 is a prime element of R then, or x is a unit and U = A or u0 is a unit and U = R.
As a consequence, A is maximal.
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3 Polynomial rings

3.1 Definitions

Definition 3.1.1. A polynomial in the indeterminate x over a field F is a set of symbols a0 +
a1x+ ...+an xn , where n can be any nonnegative integer and where the coefficients a1, ... , an

are all in F .

We will define now operation on polynomials. Two polynomials are declared to be equals
if and only if their corresponding coefficients are equal. More precisely,

Definition 3.1.2. If p(x) = a0+a1x + ...+an xn and q(x) = b0+b1x + ...+bm xm are two poly-
nomials in the indeterminate x over a field F , p(x) = q(x) if and only if for every integer i ≥ 0,
ai = bi .

To add two polynomial, we add their coefficients. More precisely,

Definition 3.1.3. If p(x) = a0+a1x + ...+an xn and q(x) = b0+b1x + ...+bm xm are two poly-
nomials in the indeterminate x over a field F , p(x)+q(x) = c0 +c1x + ...+ct x t where for each
i , ci = ai +bi .

Example 3.1.4. To add 1+x and 3−2x+x2, we consider 1+x as 1+x+0x2 and add, according
to the receipt given in the definition to obtain as their sum 4−x +x2

The most complicated to formalize, is to define the multiplication. Formally, we define:

Definition 3.1.5. If p(x) = a0+a1x + ...+an xn and q(x) = b0+b1x + ...+bm xm are two poly-
nomials in the indeterminate x over a field F , p(x)q(x) = c0+c1x+ ...+ck xk where for each i ,
ci = ai b0 +ai−1b1 +ai−2b2 + ...+a0bi .

Example 3.1.6. To multiply 1+ x − x2 to 2+ x2 + x3 we can use the definition or just do the
distribution and we get (1+x −x2)(2+x2 +x3) = 2+2x −x2 +2x3 −x5

The reader can check easily the following fact:

Definition 3.1.7 (Proposition). Let F be a field. We denote by F [x] the set of the polynomials
in the indeterminate x over a field F , together with the addition and the multiplication that
we just defined, it forms a ring called the ring of polynomials in the indeterminate x over a
field F .

On this ring, we can define an important constant which is the degree of a polynomial.

Definition 3.1.8. If p(x) = a0 +a1x + ..+an xn 6= 0 and an 6= 0 then the degree of p(x), written
as deg (p(x)), is n. That is , the degree of p(x) is the largest integer i for with the i th coefficient
of p(x) is not 0. We do not define the degree of the zero polynomial. We say a polynomial is a
constant if its degree is 0.

The degree function defined on the nonzero elements of F [x] will provide us with the
d(x) function needed in order that F [x] be a Euclidean ring.
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Lemma 3.1.9. If p(x), q(x) are two nonzero elements of F [x], then deg (p(x), q(x)) = deg (p(x))+
deg (q(x)).

Proof. Suppose that p(x) = a0+a1x + ...am xm , q(x) = b0+b1x + ...bn xn and that am 6= 0 and
bn 6= 0. Therefore deg (p(x)) = m and deg (q(x)) = n. By definition, p(x)q(x) = c0 + c1x + ...+
ck xk where where for each i , ci = ai b0+ai−1b1+ai−2b2+...+a0bi . We have cm+n = ambn 6= 0
by definition. For i > m +n, ci is the sum of terms of the form a j bi− j ; since i = j + (i − j ) >
m+n then either j > m or i − j > n. But then one of a j or bi− j is 0 and the result follows.

Corollary 3.1.10. If p(x), q(x) are non zero elements in F [x] then deg (p(x)) ≤ deg (p(x)q(x)).

Corollary 3.1.11. F [x] is an integral domain.

Lemma 3.1.12 (The division algorithm). Given two polynomials p(x) and q(x) 6= 0 in F [x],
then there exist two polynomials t (x) and r (x) in F [x] such that p(x) = t (x)g (x)+ r (x) where
r (x) = 0 or deg (r (x)) < deg (q(x)).

Proof. If the degree of p(x) is smaller than that of q(x) there is nothing to prove for merely
put t (x) = 0, r (x) = p(x), and we certainly have that p(x) = 0q(x)+p(x) where deg (p(x)) <
deg (g (x)) or p(x) = 0.
So we may assume that p(x) = a0 + a1x + ...+ am xm and q(x) = b0 +b1x + ...+bn xn where
am 6= 0, bn 6= 0 and m ≥ n.
Let f1(x) = f (x)−(am/bn)xm−n q(x); thus deg ( f1(x)) ≤ m−1, so by induction on the degree of
p(x) we may assume that p1(x) = t1(x)q(x)+ r (x) where r (x) = 0 or deg (r (x)) < deg (q(x)).
But then p(x)− (am/bn)xm−n q(x) = t1(x)q(x)+ r (x). Then, p(x) = t (x)q(x)+ r (x), where
t (x) = (am/bnàxm−n + t1(x), we do indeed have that f (x) = t (x)q(x)+r (x) where t (x), r (x) ∈
F [x] and where r (x) = 0 or deg (r (x)) < deg (q(x)). This proves the lemma.

Taking d = deg , we have proven that:

Theorem 3.1.13. F [x] is a Euclidean ring.

So, the results on the general Euclidean rings are translated as follows.

Lemma 3.1.14. F [x] is a principal ideal ring.

.

Lemma 3.1.15. Given two polynomials p(x), q(x) in F [x], they have a greatest common divi-
sor d(x) which can be realized as d(x) =λ(x)p(x)+µ(x)q(x).

A prime element of F [x] is said irreducible, we recall here the definition:

Definition 3.1.16. A polynomial p(x) in F [x] is said to be irreducible over F if whenever
p(x) = a(x)b(x) with a(x), b(x) ∈ F [x], then one of a(x) or b(x) has degree 0 (i.e., is a constant).

Remark I.9. 1. A polynomial of degree 1 is always irreducible.
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2. BA polynomial p(x) of degree 2 or 3 is irreducible over F if it has no roots on F (i.e. for
any f ∈ F , p( f ) 6= 0). This is not true for degree greater than 3.

3. BIrreducibility depends on the field; for instance the polynomial x2 +1 is irreducible
on R[x] but not on C[x], since x2 +1 = (x − i )(x + i ) where i 2 =−1.

Lemma 3.1.17. Any polynomial in F [x] can be written in a unique manner as a product of
irreducible polynomials in F [x].

Lemma 3.1.18. The ideal A = (p(x)) in F [x] is a maximal ideal if and only if p(x) is irre-
ducible over F .

3.2 Polynomials over the rational field

We shall be concerned with their irreducibility.

Definition 3.2.1. The polynomial p(x) = a0 +a1x + ...+an xn in Z[x]is said to be primitive if
the greatest common divisor of a0, a1, ... , an is 1.

Lemma 3.2.2. If p(x) and q(x) are primitive polynomials, then p(x)q(x) is a primitive poly-
nomial.

Proof. Let p(x) = a0+a1x+ ...an xn and q(x) = b0+b1x+ ..+bm xm . Suppose that the lemma
was false; then all the coefficients of p(x)q(x) would be divisible by some integer larger than
1, hence by some prime p. Since p(x) is primitive, there is ai such that p - ai , let a j the first
coefficient such that this occur. Similarly, let bk be the first coefficient of q(x) which p does
not divide. In p(x)q(x) the coefficient of x j+k , c j+k is

c j+k = a j bk + (a j+1bk−1 +a j+2bk−2 + ...+a j+k b0)+ (a j−1bk+1 +a j−2bk+2 + ...+a0b j+k )

Now by our choice of bk , p|(a j+1bk−1 + a j+2bk−2 + ... + a j+k b0) and by our choice of a j ,
p|(a j−1bk+1 +a j−2bk+2 + ...+a0b j+k ). By assumption, p|c j+k . Thus p|a j bk , which is a non-
sense since p - a j and p - bk . This proves the lemma.

Definition 3.2.3. The content of the polynomial p(x) = a0 + a1x + ...+ an xn in Z[x] is the
greatest common divisor of the integers a0, a1, ... , an

Remark I.10. Clearly, given any polynomial p(x) in Z[x] it can be written as p(x) = d q(x)
where d is the content of p(x) and where q(x) is a primitive polynomial.

Theorem 3.2.4 (Gauss’ Lemma). If the primitive polynomial p(x) can be factorized as the
product of two polynomials having rational coefficients, it can be factored as the product of
two polynomials having integer coefficients.

Proof. Suppose that p(x) = u(x)v(x) where u(x) and v(x) have rational coefficients. By
clearing denominators and taking out common factor, we can write p(x) = (a/b)λ(x)µ(x),
where a and b are integers and where both λ(x) and µ(x) have integer coefficients and are
primitive. Thus bp(x) = aλ(x)µ(x). The content of the left-hand side is b, since p(x) is prim-
itive; since both λ(x) and µ(x) are primitive, by the previous lemma λ(x)µ(x) is primitive, so
the content of the right side is a. Therefore a = b, (a/b) = 1, and p(x) =λ(x)µ(x) where λ(x)
and µ(x) have integer coefficients. This is the assertion of the theorem.
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Definition 3.2.5. A polynomial is said to be integer monic if all its coefficients are integers
and its highest coefficient is 1.

Remark I.11. Thus an integer monic polynomial is merely one of form xn +a1xn−1 + ...+an

where the a′
i s are integers. Clearly an integer monic polynomial is primitive.

Corollary 3.2.6. If an integer monic polynomial factors as the product of two non-constant
polynomials having rational coefficients then it factors as the product of two integer monic
polynomials.

The proof is left to the reader. The question of deciding whether a given polynomial is
irreducible or not can be a difficult and laborious one. We end this section with the Eisentein
criterion which declare a way to say that a polynomial is irreducible.

Theorem 3.2.7 (The Eisenstein criterion). Let p(x) = a0 + a1x + ...+ an xn be a polynomial
with integer coefficients. Suppose that for some prime number p, p - an , p|a1, p|a2, ..., p|a0,
p2 - a0. Then p(x) is irreducible over the rationals.

Proof. Without loss of generality we may assume that p(x) is primitive, for taking out the
greatest common factor of its coefficients does not disturb the hypotheses, since p - an . If
p(x) factors as a product of two rational polynomials having integer coefficients. Thus if we
assume that p(x) is reducible, then

p(x) = (b0 +b1x + ...+br xr )(c0 + c1x + ..+ cs xs),

where the b’s and the c’s are integers and where r > 0 and s > 0. Reading off the coefficient
we first get a0 = b0c0. Since p|a0, p must divide one of b0 or c0. Since p2 - a0, p cannot divide
both b0 and c0. Suppose that p|b0, p - c0. Not all the coefficients b0, ... , br can be divisible
by p; otherwise since p - an . Let bk be the first b not divisible by p, which manifestly false
since p - an . Let bk be the first b not divisible by p, k ≤ r < n. Thus, p|bk−1 and earlier b’s.
But ak = bk c0 +bk−1c1 +bk−2c2 + ...+b0ck , which conflicts with p|bk c0. This contradiction
proves that we could not have factored p(x) and so p(x) is indeed irreducible.
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Chapter II

Vector space

Vector spaces owe their importance to the fact that many models arising in solutions of spe-
cific problems turn out to be vector spaces. Among the fundamental notions that make
vector spaces so important are those of linearly dependence, basis and dimension.

1 Definitions and first examples

Definition 1.0.8. A nonempty set V is said to be a vector space over a field F if V is an abelian
group under an operation which we denote by +, and if for every α ∈ F , v ∈V there is defined
an element, written αv, in V subject to

1. α(v +w) =αv +αw;

2. (α+β)v =αv +βv;

3. α(βv) = (αβ)v;

4. 1.v = v.

for all α, β ∈ F , v, w ∈V (where the 1 represents the unit element of F under multiplication).
We say that an element α ∈ F is a scalar and an element v ∈V is a vector.

Remark II.1. Fields are vector spaces over themself.

From the definition, we get the following properties for V :

Lemma 1.0.9. If V is a vector space over F then

1. α0 = 0 for any α ∈ F ;

2. 0v = 0 for any v ∈V ;

3. (−α)v =−(αv), for any α ∈ F , v ∈V ;

4. If v 6= 0, then αv = 0 implies that α= 0.
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Remark II.2. We denote similarly the 0 of V and the 0 of F , since how the lemma states mul-
tiplication by both of them leads to the 0 of V .

Proof. This proof is analogue to the one we have done on the rings. Let’s recall quickly the
process.

1. Since α0 =α(0+0) =α0+α0, we get α0 = 0.

2. Since 0v = (0+0)v = 0v +0v . We get 0v = 0.

3. Since 0 = (α+ (−α))v =αv + (−α)v , (−α)v =−(αv).

4. If αv = 0 and α 6= 0 then 0 =α−10 =α−1(αv) = (α−1α)v = 1v = v .

The notion of subspace arises naturally from the one of vector space:

Definition 1.0.10. If V is a vector space over F and if W ⊂ V , then W is a subspace of V if
under the operations of V , W , itself, forms a vector space over F . Equivalently, W is a subspace
of V whenever w1, w2 ∈W , α, β ∈ F implies that αw1 +βw2 ∈W .

Example 1.0.11. 1. Let F be a field and K be a field which contains F as a subfield. We
consider K as a vector space over F , using as the + of the vector space the addition of
the elements of K , and by defining, for α ∈ F , v ∈ K , αv to be the product of α and v as
elements in the field K . Axioms 1, 2 and 3 for a vector space are then consequences of
the right-distributive law, left distributive and associative law, respectively, which hold
for K as a ring.

2. Let F be a field and let V be the totality of all ordered n-tuples, (α1, ...,αn) where the
αi ∈ F . Two elements (α1, ...,αn) and (β1, ...,βn) of V are declared to be equal if and only
if αi = βi for each i = 1,2, ...,n. Now introduce the requisite operations in V to make of
it a vector space by defining:

(a) (α1, ...,αn)+ (β1, ...,βn) = (α1 +β1,α2 +β2, ...,αn +βn).

(b) γ(α1, ....,αn) = (γα1, ...,γαn), for γ ∈ F .

It is easy to verify that with these operations, V is a vector space over F . Since it will keep
reappearing, we assign a symbol to it, namely F (n)

3. Let F be any field and let V = F [x] the set of polynomials in x over F . We just consider
the abelian group (V ,+) and for any P (x) = a0 + a1x + ...+ ak xk and α ∈ F , αP (x) =
αa0 +αa1x + ...+αak xk . With these operation F [x] is a vector space over F .

4. In F [x] let Vn be the set of all the polynomials of degree less than n. Vn can be seen as a
subspace of F [x]. We can notice an analogy with Vn−1 and F (n) but in order to compare
the two objects we need to define morphisms between vector spaces.

We recall that a morphism is a mapping preserving all the algebraic structure of our sys-
tem.
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2 Homomorphisms of vector spaces

Definition 2.0.12. If U and V are vector spaces over F then, the mapping t of U into V , de-
noted by t : U →V is said to be a homomorphism or a linear map if

1. t (u1 +u2) = t (u1)+ t (u2);

2. t (αu1) =αt (u1);

That is equivalent to, require only that t (α1u1 +α2u2) =α1t (u1)+α2t (u2), for any α1, α2 ∈ F
and any u1, u2 ∈U .
We denote by Hom(U ,V ) the set of all homomorphisms of U into V .
If t , in addition, is one-to-one, t is said to be an isomorphism. The kernel of t is defined as
{u ∈ U |t (u) = 0} where 0 is the identity element of the addition in V (it is a subspace of U ).
Two vectors space are said to be isomorphic if there is an isomorphism of one onto the other.

Example 2.0.13. 1. We have a isomorphism between Vn and F n+1 defined by sending each
polynomial P (x) = a0 +a1x + ...+ak xk to the n-tuples (a0, ..., an). (Verify!)

2. The identity of some vector space is a morphism.

3. The maps R to R defined by x 7→ x +1 and x 7→ x2 are not linear.

4. The (definite) integral is a linear map from the space of all real-valued integrable func-
tions on some interval to R.

5. Differentiation is a linear map from the space of all differentiable functions to the space
of all functions.

3 Quotient spaces

Let V a vector space over F and let W be a subspace of V . Considering these merely as
abelian groups construct the quotient group V /W . We have then the following lemma, we
can get inspired of the previous chapter for proving that the laws are well-defined and that
the following lemma and theorem hold.

Lemma 3.0.14. If V is a vector space over F and if W is a subspace of V , then V /W is a vector
space over F , where v1 +W , v2 +W ∈V /W and α ∈ F ,

1. (v1 +W )+ (v2 +W ) = (v1 + v2)+W ;

2. α(v1 +W ) =αv1 +W . V /W is called the quotient space of V by W .

Theorem 3.0.15. If t is a homomorphism which is onto from U to V with kernel W , then V
is isomorphic to U /W . Conversely, if U is a vector space and W a subspace of U , then there is
a homomorphism which is onto from U to U /W .
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Definition 3.0.16. Let V1, ... Vn be vector spaces. We call V the direct sum of V1, ... , Vn ,
denoted by writing V1⊕V2...⊕Vn , the set of all the n-tuples (v1, ..., vn) where vi ∈Vi . V is then
a vector space for the addition defined by (v1, ..., vn)+ (v ′

1, ..., v ′
n) = (v1 + v ′

1, ..., vn + v ′
n) and

for the multiplication by a scalar defined by α(v1, ..., vn) = (αv1, ...,αvn), for any (v1, ..., vn),
(v ′

1, ..., v ′
n) ∈V1⊕V2...⊕Vn and anyα ∈ F . (We note that two elements (v1, ..., vn) and (v ′

1, ..., v ′
n)

are equal in V1 ⊕V2...⊕Vn if and only if vi = v ′
i , for any 1 ≤ i ≤ n. )

4 Linear independence and bases

Definition 4.0.17. If V is a vector space over F and if v1, ... , vn ∈ V then any element of the
form α1v1 +α2v2 + ...+αn vn , where the αi ∈ F , is a linear combination over F of v1, ..., vn ,
where the αi ∈ F , is a linear combination over F of v1, ... ,vn .

Definition 4.0.18. If S is a non empty subset of the vector space V , then L(S), the linear span
of S, is the set of all linear combinations of finites sets of elements of S.

We put after all, into L(S) the elements required by the axioms of a vector space, so it is
not surprising to find:

Lemma 4.0.19. If S is a non empty subset of the vector space V , then L(S) is a subspace of V .

Proof. If v and w are in L(S), then v = λ1s1 + ... +λn sn and w = µ1t1 + ... +µm tm where
the λ’s and the µ’s are in F and the si and ti are all in S. Thus, for α, β ∈ F , αv +βw =
α(λ1s1+ ...+λn sn)+β(µ1t1+ ...+µm tm) = (αλ1)s1+ ...+(αλn)sn +(βµ1)t1+ ...+(βµm)tm and
so is again in L(S). L(S) has been shown to be a subspace of V .

Definition 4.0.20. The vector space V is said to be finite-dimensional over F if there is a
finite subset S in V such that V = L(S). We say the S spans (generates) V or forms a sets of
generators of V .

Example 4.0.21. 1. Every subspace of a finite-dimensional space is finite-dimensional.

2. Note that F (n) is finite-dimensional over F , for if S consists of the n vectors (1,0, ...,0),
(0,1,0, ...,0), ..., (0,0, ...,0,1), then V = L(S).

Definition 4.0.22. If V is a vector space and if v1, ..., vn are non zero element of V , we say that
they are linearly dependent over F if there exist elements λ1, ... , λn in F , not all of them 0,
such that λ1v1 + ...+λn vn = 0. Otherwise they are said to be linearly independent over F .

Remark II.3. BThe linear dependence depends not only of the vectors but also on the field
over which we are working. For example, the elements v1 = 1, v2 = i in it are linearly inde-
pendent over the reals but are linearly dependent over the complexes, since i v1 + (−1)v2 = 0.

Example 4.0.23. 1. In F (3), it is easy to prove that (1,0,0), (0,1,0) and (0,0,1) are linearly
independent while (1,1,0), (3,1,3) and (5,3,3) are linearly dependent.

Linear independence is a basic concept for vector space, very important. We will give
some of its properties.
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Lemma 4.0.24. If v1,.., vn ∈ V are linearly independent, then every element in their linear
span has a unique representation in the form λ1v1 + ..;+λn vn with the λi ∈ F .

Proof. Let a ∈ L(v1, ..., vn), suppose that it admits two representation, a =α1v1+ ...+αn vn =
λ1v1 + ..;+λn vn . Then, (λ1 −α1)v1 + ...+ (λn −αn)vn = 0. Then, by linear independence,
λi =αi , for any i .

The following theorem, although very easy has consequences which form the foundation
of the subject.

Theorem 4.0.25. If v1, ... , vn are in V then either they are linearly independent or some vk is
a linear combination of the preceding ones, v1, ..., vk−1.

Proof. If v1, ..., vn are linearly independent there is, of course, nothing to prove. Suppose
then that α1v1 + ...+αn vn = 0 where not all the α’s are 0. Let k be the largest integer for
which α 6= 0. Since αi = 0 for i > k, α1v1 + ...+αk vk = 0 which, since αk 6= 0, implies that
vk = α−1

k (−α1v1 −α2v2 − ...−αk−1vk−1) = (−α−1
k α1)v1 + ...+ (−α−1

k αk−1)vk−1. Thus vk is a
linear combination of its predecessors.

Corollary 4.0.26. If v1,..., vn in V have W as linear span, then we can find a subset of v1,
..., vn of the form v1, v2, ..., vk , vi1 , ..., vir consisting of linearly independent elements whose
linear span is also W .

Proof. If v1, ..., vn are linearly independent we are done. If not, weed out from this set the
first v j , which is linear combination of its predecessors. Since v1, ... , vk are linearly inde-
pendent, j > k. The subset so constructed, v1,..., vk , ..., v j−1, v j+1, ..., vn has n −1 elements.
Clearly its linear span contained in W . However, we claim that it is actually equal to W ;
for given w ∈ W , w can be written as a linear combination of v1, ..., vn . But in this linear
combination we can replace v j by a linear combination of v1, ..., v j−1. That is, w is a linear
combination of v1, ..., v j−1, v j+1, ...,vn .
Continuing this weeding out process, we reach a subset v1,..., vk , vi1 , ..., vir whose linear
span is still W but in which no element is a linear combination of the preceding ones. By the
previous theorem, the elements v1, ... , vk , vi1 , ..., vir must be linearly independent.

Definition 4.0.27. A subset S of a vector space V is called a basis of V if S consist of linearly
independent elements and V = L(S).

Example 4.0.28. 1. (1,0, ...,0), ..., (0, ...,0,1) is a basis of F (n)

2. (1, x, x2, ...) is a basis of F [x].

3. Let ei , j be the (n,m)-matrices with 1 at the position (i , j ) and zer o anywhere else. This
is a basis of the vector space of matrices (n,m) over a field F .

Lemma 4.0.29. If v1, ...,vn is a basis of V over F and if w1, ..., wm in V are linearly indepen-
dent over F , then m ≤ n.
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Proof. Every vector in V , so in particular wn , is a linear combination of v1, ..., vn . Therefore
the vectors wm , v1, ..., vn are linearly dependent. Moreover, they span V since v1,..., vn

already do so. Thus some proper subset of these wm , vi1 , ..., vik with k ≤ n −1 forms a basis
of V . We have "traded off" one wm , in forming this new basis for at least one vi . Repeat
this procedure with the set wm−1, wm , vi1 , ..., vik . From this linearly dependent set, by the
first corollary of the last theorem, we can extract a basis of the form wm−1, wm , v j1 , ... , v js ,
s ≤ n − 2. Keeping up this procedure we eventually get down to a basis of V of the form
w2, ...., wm−1, wm , vα, vβ, ...; since w1 is not linear combination of w2, ... wm−1 the above
basis must actually include some v . To get to this basis we introduced m −1 w ’s, each such
introduction having cost us at least one v , and yet there is a v . Thus m −1 ≤ n −1 and so
m ≤ n.

As a direct consequence of this lemma we get the following corollary:

Corollary 4.0.30. If V is a finite-dimensional vector space over F , then two basis have the
same number of elements.

Definition 4.0.31. The number of elements of a basis of V is an important invariant of a
vector space called the dimension of V over F , denoted by di mF (V ).

Corollary 4.0.32. If V is a finite-dimensional vector space over F and if u1, ..., um span V
then some subset of u1, ..., um forms a basis of V .

Lemma 4.0.33. A isomorphism of finitely dimensional vector spaces send bases into bases. In
particular, two isomorphic vector space have the same dimension. More precisely, two finitely
dimensional vector space are isomorphic if and only if they have same dimension.

Proof. Consider α : U →V an isomorphism between two finitelevector spaces U and V . Let
u1, ..., un a base of U . We want to prove that α(u1), ... , α(un) is a basis of V . Let v ∈V . Then,
from the surjectivity ofα, there is a u ∈U such thatα(u) = v . Since u1, ..., un is a base of U , in
particular it generates U then there areλ1, ... ,λn ∈ F such that u =λ1u1+...+λnun . But then
v =α(u) =λ1α(u1)+...+λnα(un) (sinceα is a morphism of vector spaces. As a consequence,
α(u1), ... , α(un) generates V . Now, we prove the linearly independence, let λ1, ... , λn ∈ F ,
such that λ1α(u1)+ ...+λnα(un) = 0, since α is a morphism, we get α(λ1u1 + ...+λnun) = 0.
But α is an isomorphism, thus λ1u1 + ...+λnun = 0, and by linearly independence of u1, ...,
un , we get that λi = 0, for any i , as required.
Now, we want to prove that two finitely dimensional vector space are isomorphic if and only
if they have same dimension. If they have not same dimension then they cannot be isomor-
phic since basis are sent to basis. Let U and V two vector space of the same dimension n. We
put u1, ..., un (resp. v1, ..., vn) the basis of U (resp. V ). Then defining the mapping α : U →V
by α(ui ) = vi , for any i and extending it by linearity such that it defines a morphism. Then it
is not hard to prove that it is an isomorphism. (Verify!).

Corollary 4.0.34. F (n) is isomorphic to F (m) if and only if n = m.

Corollary 4.0.35. If V is a finite-dimensional vector space over F then V is isomorphic to F (n),
where n is the dimension of V .
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Lemma 4.0.36. If V is a finite-dimensional vector space over F and if u1, ..., um ∈ V are
linearly independent, then we can find vectors um+1, ..., um+r in V such that u1, um , um+1, ...,
um+r is a basis of V .

Proof. Since V is finite-dimensional it has a basis; let v1, ..., vn be a basis of V . Since these
span V , the vector u1, ..., um , v1, ..., vn also span V . Then we can find a subset of the form
u1, ..., um , vi1 ,..., vir which consists of linearly independent elements which span V .

Lemma 4.0.37. If V is finite-dimensional and if W is a subspace of V , then W is finite-
dimensional, di m(W ) ≤ di m(V ) and di m(V /W ) = di m(V )−di m(W ).

Proof. Write r := di m(W ) and n := di m(V ). Let w1, ..., wr be a basis of W . By the previous
lemma, we can find vr +1, ..., vn ∈V such that w1, ..., wr , vr+1,..., vn form a basis of V . Then
we want to prove that the n−r elements ¯vr+1,..., v̄n image in V /W of vr+1,..., vn . Let v̄ ∈V /W
where v is a representative of v̄ in V . Then, v =α1w1 + ...+αr wr +β1vr+1 + ...+βn vn (since
w1, ..., wr , vr+1,..., vn form a basis of V ). But then v̄ =β1 ¯vr+1+...+βn v̄n (since wi ∈W , w̄i = 0
for any i ). Thus, vr+1,..., vn span V /W . We want to prove now the linearly independence.
Take λ1 ¯vr+1 + ....+λr v̄n = 0. then λ1vr+1 + ....+λn vn ∈W , thus there are γi ∈ F and wi ∈W
such thatλ1vr+1+....+λn vn = γ1w1+....+γr vr . Thenλ1vr+1+....+λn vn−γ1w1−....−γr vr = 0
and since w1, ..., wr , vr+1,..., vn are linearly independent then λi = 0 and γi = 0 for any i .

Corollary 4.0.38. If A and B are finite dimensional subspaces of a vector space V , then A+B
is finite-dimensional and di m(A+B) = di m(A)+di m(B)−di m(A∩B).

Proof. We have a isomorphism

A+B

B
' A

A∩B
(Verify!)

Then di m( A+B
B ) = di m( A

A∩B ). And the result follows naturally.
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Chapter III

Field theory

Fields play an important role in algebra or in number theory. We underline in this chapter
some of their properties.

1 Extension fields

If F is a field and F [X ] is the set of all polynomials over F , that is polynomials with coef-
ficients in F , we know that F [X ] is an Euclidean domain, and therefore a principal ideal
domain and a unique factorization domain. Thus any nonzero polynomial f in F [X ] can be
factored uniquely as a product of irreducible polynomials. Any root of f must be a root of
one of the irreducible factors, but at this point we have no concrete information about the
existence of roots and how they might be found. For example, X 2 +1 has no real roots but
if we consider the larger field of complex numbers, we get two roots +i and −i . It appears
that the process of passing to a larger field may help produce roots, and this turn out to be
correct.

Definition 1.0.39. Let F be a field; a field is said to be an extension of F if K contains F .
Equivalently, K is an extension of F if F is a subfield of K .

Throughout this chapter F will denote a given field and K an extension of F .

Remark III.1. If K is an extension of F , then, under the ordinary field operation in K , K is a
vector space over F . As a vector space we may talk about linear dependence, dimension, bases,
etc., in K relative to F .

Definition 1.0.40. The degree of K over F denoted by [K : F ] is the dimension of K as a vector
space over F . If it is finite (i.e. K is finite dimensional as a vector space over F ), we say that K
is a finite extension of F .

As we announced in the introduction of this part, if f is a non constant polynomial over
the field F , and f has no roots in F , we can always produce a root of f in an extension field
of F . We do this after a preliminary result.
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Lemma 1.0.41. Let f : F → K be a homomorphism of fields, i.e. f (a+b) = f (a)+ f (b), f (ab) =
f (a) f (b) for any a,b ∈ F and f (1F ) = 1E . Then f is a monomorphism.

Proof. Taking I to be the kernel of F , I it is an ideal and we remember that the only ideals of
the field F being (0) and F . But since f (1) = 1 then I 6= F so I = (0) and f is a injective.

For a tower of extensions, we have this simple but powerful theorem.

Theorem 1.0.42. If L is a finite extension of K and if K is a finite extension of F , then L is a
finite extension of F . Moreover, [L : F ] = [L : K ][K : F ].

Proof. Suppose that [L : K ] = n and that [K : F ] = m. Let v1, ... , vn be a basis of L as vector
space over K and let w1, ..., wm be a basis of K as vector space over F . We want to prove that
{vi w j }1≤i≤n,1≤ j≤m is a basis of L as vector space over F , and thus [L : F ] = mn.
We prove first that {vi w j }1≤i≤n,1≤ j≤m generates L. Let t ∈ L, since {vi }1≤i≤n is a basis of L over
K , there are elements ki ∈ K , where 1 ≤ i ≤ n such that t =∑n

i=1 ki vi , but {w j }1≤ j≤m is a basis
of K over F , then there are elements fi , j ∈ F , such that ki =∑m

j=1 fi , j w j where 1 ≤ j ≤ m. As

a consequence, t =∑n
i=1

∑m
j=1 fi , j vi w j and {vi w j }1≤i≤n,1≤ j≤m generates L over F .

We prove now that {vi w j }1≤i≤n,1≤ j≤m are linearly independent. Suppose that we have ele-
ments fi , j for 1 ≤ i ≤ n,1 ≤ j ≤ m such that

∑n
i=1

∑m
j=1 fi , j vi w j = 0. By associativity, we have∑n

i=1(
∑m

j=1 fi , j w j )vi = 0 with
∑m

j=1 fi , j w j ∈ K , since {vi }1≤i≤n are linearly independent over

K then
∑m

j=1 fi , j w j = 0 for any 1 ≤ i ≤ n but now {w j }1≤ j≤m are also linearly independent
over F so we get that fi , j = 0, for any 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Remark III.2. In the previous proof, we have seen that if L is a finite extension of K and if K
is a finite extension of F , and given {αi }i a basis of K over F and {β j } j a basis of L over K then
{αiβ j }i , j form a basis of L over F .

Corollary 1.0.43. If L is a finite extension of F and K is a subfield of L which contains F , then
[K : F ]|[L : F ].

Remark III.3. By the previous result, if L is an extension of F such that [L : F ] is prime then
there is no proper subextension of L over F .

2 Roots of polynomials

Definition 2.0.44. If p(x) ∈ F [x], then an element a lying in some extension field of F is called
root of p(x) if p(a) = 0.

Lemma 2.0.45. If p(x) ∈ F [x] and if K is an extension of F , then for any element b ∈ K , p(x) =
(x −b)q(x)+p(b) where q(x) ∈ K [x] and where deg (q(x)) = deg (p(x))−1.

Proof. We can compute the Euclidean division of p(x) by (x −b) in the Euclidean ring K [x],
then p(x) = (x − b)q(x) + r , where q(x) ∈ K [x] and deq(q(x)) < deq(p(x)), and r = 0 or
deg (r ) < deg (x − b) = 1. Thus either r = 0 or deg (r ) = 0; in either cases r ∈ K . Thus,
p(b) = (b −b)q(b)+ r = r .
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Corollary 2.0.46. If a ∈ K is a root of p(x) ∈ K [x], where F ⊂ K , then in K [x], (x −a)|p(x).

Proof. We have that p(x) = (x −a)q(x)+p(a) but we know that p(a) = 0, since a is a root of
p(x). Thus, (x −a)|p(x) in K [x].

Definition 2.0.47. The element a ∈ K is a root of p(x) ∈ F [x] of multiplicity m if (x−a)m |p(x),
whereas (x −a)m+1 - p(x).

We have a bound for the number of roots of a polynomial given by its degree. More
precisely,

Lemma 2.0.48. A polynomial of degree n over a field can have at most n roots in any extension
field.

Proof. We proceed by induction on n, the degree of the polynomial p(x). If p(x) is of degree
1, then it must be of the form αx +β, where α and β are in a field F with α 6= 0. Thus, a root
a of p(x) is such that p(a) = 0, thus a =−β/αwhence the conclusion of the lemma certainly
holds in this case.
Assuming the result to be true in any field for all polynomials of degree less than n, let us
suppose that p(x) is of degree n over F . Let K be any extension of F . If p(x) has no roots
in K , then we are certainly done, for the number of roots in K , namely zero, is definitively
at most n. So, suppose that p(x) has at least one root a ∈ K , and that a has multiplicity m.
Since (x −a)m |p(x), m ≤ n follows. Now p(x) = (x −a)m q(x), where q(x) ∈ K [x] is of degree
n −m. From the fact that (x − a)m+1 - p(x), we get that (x − a) - q(x), and by the previous
corollary, a is not a root of q(x). If b 6= a is a root, in K , of p(x), then 0 = p(b) = (b −a)m q(b);
however, since b −a 6= 0 and since we are in a field, we conclude that q(b) = 0. That is, any
root of p(x), in K , other than a, must be a root of q(x). Since q(x) is of degree n −m < n,
by our induction hypothesis q(x) has at most n −m roots in K , which, together with the
other root a, counted m times, tells us that p(x) has at most m+ (n−m) = n roots in K . This
completes the induction and proves the lemma.

Remark III.4. Commutativity is essential. If we consider the ring of real quaternion (i.e. R =<
i , j ,k > where i 2 = j 2 = k2 = i j k =−1), which falls short of being a field only in that it fails to
be commutative, then the polynomial x2+1 has at least 3 roots, i , j , k (in fact, it has an infinite
number of roots). In a somewhat direction we need, even when the ring is commutative, that
it be an integral domain, for if ab = 0 with a 6= 0 with a 6= 0 and b 6= 0 in the commutative ring
R, then the polynomial ax of degree 1 over R has at least two distinct roots x = 0 and x = b in
R.

Definition 2.0.49. If f (x) =αn xn +αn−1xn−1 + ...+α1x1 +α0 in F [x], then the derivative of
f (x) written as f ′(x) is the polynomial f ′(x) = nαn−1xn−1+ (n−1)αn−2xn−2+ ...+α1 in F [x].

Remark III.5. Let F be a field of characteristic p 6= 0. In this case, the derivative of the poly-
nomial xp is pxp−1 = 0. Thus the usual result from the calculus that a polynomial xp is
pxp−1 = 0. Thus the usual result from the calculus that a polynomial whose derivative is 0
must be a constant no longer need hold true. However, if the characteristic of F is 0 and if
f ′(x) = 0 for f (x) ∈ F [x], it is indeed true that f (x) =α ∈ F . Even when the characteristic of F
is p 6= 0, we can still describe the polynomials with zero derivative. (exercise!).
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It is easy to show that then

Lemma 2.0.50. For any f (x), g (x) ∈ F [x] and any α ∈ F ,

1. ( f (x)+ g (x))′ = f ′(x)+ g ′(x);

2. (α f (x))′ =α f ′(x);

3. ( f (x)g (x))′ = f ′(x)g (x)+ f (x)g ′(x).

Lemma 2.0.51. The polynomial f (x) ∈ F [x] has a multiple root if and only if f (x) and f ′(x)
have a nontrivial (that is, of positive degree) common factor.

Proof. If f (x) has a multiple root α, then f (x) = (x −α)m q(x), where m > 1. However, as
is easily computed, ((x −α)m)′ = m(x −α)m−1 whence by the previous lemma, f ′(x) = (x −
α)m q ′(x)+m(x−α)m−1q(x) = (x−α)r (x), since m > 1. But this says that f (x) and f ′(x) have
the common factor x −α, thereby proving the lemma in one direction.
On the other hand, suppose that f (x) has no multiple root, then in the splitting field K of F ,
f (x) = (x −α1)...(x −αr ) where its root αr are all distinct. But

f ′(x) =
r∑

i=1
(x −α1)...(x −αi )...(x −αr )

where .. denotes the term is omitted. No root of f (x) is a root of f ′(x), indeed for any root of
f (x) αi , we have that

f ′(αi ) = ∏
j 6=i

(αi −α j ) 6= 0

since the roots are all distinct. However, if f (x) and f ′(x) have a nontrivial common factor
in F , they have a common root, namely, any root of this common factor. The net result is
that f (x) and f ′(x) have no nontrivial common factor, and so the lemma has been proved in
the other direction.

Corollary 2.0.52. If f (x) is irreducible, then

1. If the characteristic of F is 0, f (x) has no multiple roots.

2. If the characteristic of F is p 6= 0, f (x) has a multiple root only if it is of the form f (x) =
g (xp ).

Proof. Since f (x) is irreducible, its only factors in F [x] are 1 and f (x). If f (x) has a multiple
root, then f (x) and f ′(x) have a nontrivial common factor, hence f (x)| f ′(x). However, since
the degree of f ′(x) is less than that of f (x), then only possible way that this can happen is
for f ′(x) to be 0. In characteristic 0, this implies that f (x) is a constant, which has no roots;
in characteristic p 6= 0, this forces f (x) = g (xp ).

Theorem III.6. Let f be a non constant polynomial over the field F . Then there is an extension
K /F and an element a ∈ K such that f (a) = 0.
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Proof. Since f can be factored into irreducibles, we may assume without loss of generality
that f itself is irreducible. The ideal I =< f (X ) > in F [X ] is maximal. Thus K := F [X ]/I is
a field. Define a homomorphism h : F → K = F [X ]/I by sending a to a + I ; by the previous
lemma h is a monomorphism, so we may identify F with a subfield of K . Now let α= X + I ;
if f (X ) =α0 +α1X + ....+αn X n , then

f (a) = (α0 + I )+α1(X + I )+ ...+αn(X + I )n

= (α0 +α1X + ...+αn X n)+ I
= f (X )+ I

which is zero in K . if a is not algebraic over F , then K is said to be an algebraic extension of
f . (The extension K is sometimes said to be obtained from F by adjoining a root a of f .)

Here further connection between roots and extensions.

Proposition 2.0.53. Let f and g be polynomials over the field F . Then f and g are relatively
prime if and only if f and g have no common root in any extension of F .

Proof. If f and g are relatively prime, their greatest common divisor is 1, so there are poly-
nomials a(X ) and b(X ) over F such that a(X ) f (X )+b(X )g (X ) = 1. If α is a common root
of f and g , then the substitution of α for X yields 0 = 1, a contradiction. Conversely, if the
greatest common divisor d(X ) of f (X ) and g (X ) is non constant, let K be an extension of F
in which d(X ) has a rootα (by the previous theorem, it exists). Since d(X ) divides both f (X )
and g (X ), α is a common root of f and g in K .

Corollary 2.0.54. Let f and g are distinct monic irreducible polynomials over the field F .
Then f and g have no common root in any extension of F .

Proof. This follows directly by the previous proposition, since f and g are thus relatively
prime. Indeed if h is a non constant divisor of the irreducible polynomials f and g then
up to multiplication by constants, h coincides with both f and g , so that f is a constant
multiple of g . This is impossible because f and g are monic and distinct. Thus f and g are
relatively prime.

3 Algebraic elements

Definition 3.0.55. An element a ∈ K is said to be algebraic over F if there exist elements
α0, α1,...,αn ∈ F , not all 0, such that α0an +α1an−1 + ...+αn = 0. In other words, a ∈ K is
algebraic over F if there is a nonzero polynomial p(x) ∈ F [x] which a satisfies, that is, for
which p(a) = 0. The monic polynomial of lowest positive degree satisfied by a is called the
minimal polynomial, we write it as mi n(α,F ). (A monic polynomial is a polynomial such
that the highest power of x is 1.) If α is not algebraic over F , it is said to be transcendental
over F . If every element of K is algebraic over F , then K is said to be an algebraic extension
of F .
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Remark III.7. Suppose that a ∈ K is algebraic over F and let I be the set of all polynomials g
over F such that g (a) = 0. If g1 and g2 belongs to I , so does g1 ± g2, and if g ∈ I and c ∈ F [X ],
then cg ∈ I . Thus I is an ideal of F [X ] is a PID, I consist of all multiples of some m(X ) be
monic, then m(X ) is unique. The polynomial m(X ) has the following properties:

1. If g ∈ F [X ], then g (a) = 0 if and only if m(X ) divides g (X ); Indeed, g (α) = 0 if and only
if g (X ) ∈ I = (m(X )).

2. m(X ) is the monic polynomial of least degree such that m(a) = 0;

3. m(X ) is the unique monic irreducible polynomial such that m(a) = 0.Indeed, note that
if m(X ) = h(X )k(X ) with deg (h(X )) and deg (k(X )) less than deg (m(X )), then either
h(a) = 0 or k(a) = 0, so that either h(X ) or k(X ) is a multiple of m(X ), which is impossi-
ble. Thus m(X ) is irreducible, and uniqueness of m(X ) follows from the lemma stating
that two distinct monic irreducible polynomial have no common roots.

It correspond to the minimal polynomial of a over F .

Definition 3.0.56. An element a ∈ K is said to be algebraic of degree n over F if mi n(a,F )
has degree n (that is a satisfies a nonzero polynomial over F of degree n but no nonzero poly-
nomial of lower degree.)

Remark III.8. F is algebraic over F , any element of F is algebraic of degree 1 over F . Indeed,
we can always consider the polynomial of degree 1 x −a ∈ F [x], for any a ∈ F .

Definition 3.0.57. For a ∈ K . We denote F (a) the smallest subfield of K containing both F
and a, that is

F (a) = { f (a)/g (a)| f , g ∈ F [X ] and g (a) 6= 0}

By induction, we can define F (a1, ..., an) for any a1, a2, ... an ∈ K .

Lemma 3.0.58. If a ∈ K is algebraic over F , and the minimal polynomial m(X ) of a has degree
n, F (a) corresponds to the set of polynomials in a with coefficients in F . We write F [a] such
a set instead of F (a), in this case. More precisely, F [a] correspond to the set Fn−1[a] of all
polynomial of degree at most n −1 with coefficient in F , and 1, a, ..., an−1 form a basis for the
vector space F [a] over the field F . Consequently, [F [a] : F ] = n.

Proof. Let f (X ) be any nonzero polynomial over F of degree n −1 or less. Then since m(X )
is irreducible and deg ( f (X )) < deg (m(X )) and m(X ) are relatively prime, there are polyno-
mials c(X ) and b(X ) over F such that c(X ) f (X )+b(X )m(X ) = 1. But then c(a) f (a) = 1, so
that any nonzero element of Fn−1[a] has a multiplicative inverse. It follows that Fn−1[a] is
a field. (This may not be obvious, since the product of two polynomials of degree n −1 or
less can have degree greater than n −1 but if deg (g (X )) > n −1, then divide g (X ) by m(X )
to get g (X ) = q(X )m(X )+ r (X ) where deg (r (X )) < deg (m(X )) = n. Replace X by a to get
g (a) = r (a) ∈ Fn−1[a]. Less abstractly, if m(a) = a3+a+1 = 0, then a3 =−a−1, a4 =−a2−a,
and so on.
Now any field containing F and a must contain all polynomials in a, in particular all polyno-
mials of degree at most n−1. Therefore, Fn−1[a] ⊆ F [a] ⊆ F (a). But F (a) is the smallest field
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containing F and a, so F (a) ⊆ Fn−1[a], and we conclude that F (a) = F [a] = Fn−1[a]. Finally,
the elements 1, a, ..., an−1 certainly span Fn−1[a], and they are linearly independent because
if a nontrivial linear combination of these elements were zero, we would have a nonzero
polynomial of degree less than that of m(X ) with a as a root.

Theorem 3.0.59. The element a ∈ K is algebraic if and only if F (a) is a finite extension of F .

Proof. Suppose that F (a) is a finite extension of F and that [F (a) : F ] = m. Consider the
elements 1, a, ..., am ; they are all in F (a) and are m + 1 in number. So they are linearly
dependent over F . So, there are elements α0, α1,..., αm in F , not all 0, such that α01+α1a +
α2a2 + ...+αm am = 0. Hence a is algebraic over F .
The converse is proven by the previous lemma.

Theorem III.9. If K is a finite extension of F , then K is an algebraic extension of F .

Proof. Let a ∈ K and let n = [K : F ]. Then 1, a, a2, ..., an are n+1 vectors in an n-dimensional
vector space, so they must be linearly dependent. Thus a is a root of a nonzero polynomial
with coefficients in F , which means that a is algebraic over F .

Corollary 3.0.60. If L is an algebraic extension of K and if K is an algebraic extension of F ,
then L is an algebraic extension of F .

Proof. Let u be any arbitrary element of L. Since L is algebraic over K , then there is a polyno-
mial satisfied by u, i.e σ0 + ....σmum = 0. Consider now the field extension M = F (σ0, ...,σm)
is a finite extension of F since each σi is algebraic over F . But u is of course also algebraic
over M since it is algebraic over F . Thus M(u) is a finite extension of F . But this implies
that u is algebraic over M . However, [M(u) : F ] = [M(u) : M ][M : F ], whence M(u) is a finite
extension of F . But this implies that u is algebraic over F .

Theorem III.10. If a, b in K are algebraic over F then a ± b, ab and a/b (if b 6= 0) are all
algebraic over F . In other words, the elements in K∗which are algebraic over F form a subfield
of K .

Proof. Suppose that a is algebraic of degree m over F while b is algebraic of degree n over
F . Thus [F (a) : K ] is of degree m over F . Now b is algebraic of degree n over K , a fortiori it is
algebraic of degree at most n over F (a) which contains F . Thus the subfield F (a,b) of K is of
degree at most n over F (a).But [F (a,b),F (a)][F (a) : F ] = [F (a,b) : F ]; therefore [W : F ] ≤ mn
and so W is a finite extension of F . However, a and b are both in F (a,b), whence all of a±b,
ab, a/b are in F (a,b). Since [F (a,b) : F ] is finite, these elements must be algebraic over
F .

Remark III.11. If a and b in K are algebraic over F of degree m and n, respectively, then a±b,
ab and a/b (if b 6= 0) are algebraic over F of degree at most mn.

When we work over the rationals some interesting result can be proved. We have the
following definitions:
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Definition 3.0.61. A complex number is said to be an algebraic number if it is algebraic over
the field of rational numbers. A complex number which is not algebraic is called transcen-
dental. An algebraic number a is said to be an algebraic integer if it satisfies an equation of
the form am +α1am−1 + ...+αm = 0 where α1, ..., αm are integers.

Lemma 3.0.62. Let f (x) to be the polynomial

f (x) = 1

(p −1)!
xp−1(1−x)p ...(n −x)p

where p is a prime number such that p > n. Consider F (x) = f (x)+ ....+ f ((n+1)p−1))(x) where
f (i )(x) is the i th derivative of f (x) with respect to x. Then

1. for any j ∈ {1, ...n}, F ( j )− e j F ( j −1) =−e(1−θ j ) f (θ j ) = ε j where θ j is some real number
between 0 and 1. Moreover, ε j → 0 when p →∞.

2. f (i )(x) is a polynomial with coefficients which are integers all of which are multiples of
p, for any i ≥ p.

3. F ( j ) is an integer and is a multiple of p, for j = 1,2, ...,n and F (0) is an integer not
divisible by p.

Proof. 1. Since f ((n+1)p))(x) = 0, then d/d x(e−xF (x)) =−e−x f (x). Then we apply to g (x) =
e−xF (x) continuously differentiable, single-valued function on the closed interval [x1, x2]
the formula

g (x1)− g (x2)

x1 −x2
= g (1)(x1 +θ(x2 −x1))

where 0 < θ < 1.
We have

ε j =
−e j (1−θ j )(1− jθ j )p ...(n − jθ j )p ( jθ j )p−1 j

(p −1)!

with 0 < θi < 1. Thus

|εi | ≤ en np (n!)p

(p −1)!
→ 0

when p →∞. (Use induction on n).

2. Use a induction on n.

3. f (x) has a root of multiplicity p at x = 1,2, ...,n. Thus for j = 1,2...,n, f ( j ) = 0, ... ,

f (p−1)( j ) = 0. Then F ( j ) = 0+∑((n+1)p−1)
i=p+1 f (i )( j ). Thus by 2., F ( j ) is an integer and is

a multiple of p. 0 is a root of f (x) of multiplicity p −1. f (0) = ... = f (p−1)(0) = 0. For
i ≥ p, f (i )(0) is an integer divisible by p and f (p)(0) = (n!)p and since p > n and is
a prime number, so p - (n!)p so that f (p−1)(0) is an integer not divisible by p. Since
F (0) = f (0)+ f (1)(0)+ ...+ f (p−1)(0)+ f (p)(0)+ ...+ f ((n+1)p−1)(0), we conclude that F (0)
is an integer not divisible by p.
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Theorem III.12. The number e is transcendental.

Proof. Suppose now that e is an algebraic number; then it satisfies some relation of the form

cnen + cn−1en−1 + ...+ c1e1 + c0 = 0,

where c0, c1, ..., cn are integers and where c0 > 0. Multiplying, the equalities of the previous
lemma 1. by c j and adding these up we get

c1F (1)+ ...+ cnF (n)−F (0)(c1e + ...+ cnen) = c1ε1 + ...+ cnεn

But since the ε j → 0 when p → ∞. We can take a prime p larger than both n and c0 and
large enough to force |c1ε1+ ...+cnεn | < 1. But c1ε1+ ...+cnεn = c0F (0)+ ....+cnF (n) must be
an integer; since it is strictly smaller than 1, then c1ε1 + ...+ cnεn = 0; this however is sheer
nonsense, since we have that p - (c0F (0)+ ....+ cnF (n)); whereas p|0. This contradiction,
stemming from the assumption that e is algebraic, proves that e must be transcendental.

4 Splitting field

We are able now to precise more one of a result that we obtained previously:

Theorem III.13. if p(x) is a polynomial in F [x] of degree n ≥ 1 and is irreducible over F , then
there is an extension E of F , such that [E : F ] = n, in which p(x) has a root.

Proof. Let F [x] be the ring of polynomials in x over F and let V = (p(x)) be the ideal of F [x]
generated by p(x). Since p(x) is irreducible then V is a maximal ideal and E = F [x]/V is a
field. This E will be shown to satisfy the conclusions of the theorem.
As we have already seen we have an embedding F ,→ E , which permits to see E as an exten-
sion of F . Finally, E is a extension of degree n since 1+V , x +V , ... , xn−1 +V form a basis of
E over F . (Prove!).

Corollary 4.0.63. If f (x) ∈ F [x], then there is a finite extension E of F in which f (x) has a
root. Moreover, [E : F ] ≤ deg ( f (x)).

More generally, we can construct a field containing all the roots:

Theorem 4.0.64. Let f (x) ∈ F [x] be of degree n ≥ 1. Then there is an extension E of F of degree
at most n! in which f (x) has its n roots (A root of multiplicity m is counted as m roots).

Proof. By the above corollary, there is an extension E0 of F with [E0 : F ] ≤ n in which f (x)
has a root α. Thus in E0[x], f (x) factors as f (x) = (x −α)q(x), where q(x) is of degree n −1.
Using induction (or continuing the above process), there is an extension E of E0 of degree at
most (n−1)! in which q(x) has n−1 roots. Since any root of f (x) is either α or a root of q(x),
we obtain in E all n roots of f (x). Now, [E : F ] = [E : E0][E0 : F ] ≤ (n −1)!n = n!.

Definition 4.0.65. If f (x) ∈ F [x], a finite extension E of F is said to be a splitting field over F
for f (x) if over E (that is, in E [x]), but not over any proper subfield of E, f (x) can be factorized
as a product of linear factors. In other words, E is a splitting field of f (x) over F if E is a
minimal extension of F in which f (x) has n roots, where n = deg ( f (x)).
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Remark III.14. 1. The previous theorem guarantees the existence of splitting fields.

2. Given n, we can always construct a polynomial of degree n such that the splitting field
in equal to n!.

In the following, we consider two isomorphic field and denote by τ an isomorphism of F
to F ′. For convenience, let us denote the image of any α ∈ F under τ by α′; that is τ(α) =α′.
This isomorphism induce an isomorphism that we denote τ∗ between F [x] and F ′[t ] the
ring of the polynomials on the indeterminate x (resp. t ) over F (resp. F ′) sending a polyno-
mial f (x) =α0+α1x+ ...+αn xn ∈ F [x] to τ∗( f (x)) =α′

0+α′
1t + ...+α′

n t n ∈ F ′[t ], again we will
denote τ∗( f (x)) by f ′(x). This implies immediately that the factorizations of f (x) in F [x]
result in like factorizations of f ′(t ) in F ′[t ] and vice versa. In particular, f (x) is irreducible in
F [x] if and only if f ′(t ) is irreducible in F ′[t ].

Lemma 4.0.66. There is an isomorphism τ∗∗ of F [x]/( f (x)) onto F ′[t ]/( f ′(t )) with the prop-
erty that for every α ∈ F , τ∗∗(α) =α′ and τ∗∗(x + ( f (x))) = t + ( f ′(t )). In other work, τ∗∗ send
g (x)+ ( f (x)) to g ′(t )+ ( f ′(t )), for every g (x) ∈ F [x].

The proof is left as exercise. We wish to prove the uniqueness of splitting fields. We have
the following theorem.

Theorem III.15. If p(x) is irreducible in F [x] and if v is a root of p(x), then F (v) is isomorphic
to F ′(w) where w is a root of p ′(t ); moreover, this isomorphism σ can be chosen that

1. σ(v) = w.

2. σ(α) =α′, for every α ∈ F .

Proof. Let v be a root of the irreducible polynomial p(x) lying in some extension K of F .
Let M = { f (x) ∈ F [x]| f (v) = 0}. Trivially M is an ideal of F [x] and M 6= F [x]. Since p(x) ∈ M
and is an irreducible polynomial, we have that M = (p(x)). We can then prove that there is
an isomorphism ψ∗ from F [x]/(p(x)) to F (v) leaving every element of F fixed and with the
property that v =ψ∗(x+(p(x))). Since p(x) is irreducible in F [x], p ′(t ) is irreducible in F ′[t ],
and there is an isomorphism θ∗ of F ′[t ]/(p ′(t )) onto F ′(w) where w is a root of p ′(t ) such
that θ∗ leaves every element of F ′ fixed and such that θ∗(t + (p ′(t ))) = w .
We know also that there is an isomorphism τ∗∗ of F [x]/(p(x)) onto F ′[t ]/(p ′(t )) which coin-
cides with τ on F and which takes x+(p(x)) onto t +(p ′(t )). The mapping σ= (ψ∗)−1τ∗∗θ∗ :
F (v) → F [x]/(p(x)) → F ′[t ]/(p ′(t )) → F ′(w) is an isomorphism satisfying the requirement of
the isomorphism in the statement of the theorem.

Corollary 4.0.67. If p(x) ∈ F [x] is irreducible and if a, b are two roots of p(x), then F (a) is
isomorphism to F (b) by an isomorphism which takes a onto b and which leaves every element
of F fixed.

Theorem III.16. Any splitting fields E and E ′ of the polynomials f (x) ∈ F [x] and f ′(t ) ∈ F ′[t ],
respectively are isomorphic by an isomorphism φ with the property that φ(α) = α′ for every
α ∈ F . (In particular, any two splitting fields of the same polynomial over a given field F are
isomorphic by an isomorphism leaving every element of F fixed.)
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Proof. We argue by induction on the degree [E : F ] of the splitting field.
If [E : F ] = 1, then E = F , whence f (x) splits into a product of linear factors over F itself
but then f ′(t ) splits over F ′ into a product of linear factors, hence E ′ = F ′. But then φ = τ

provides us with an isomorphism of E onto E ′ coinciding with τ on F .
Assume the result to be true for any field F0 and any polynomial f (x) ∈ F0[x] provided the
degree of some splitting field E0 of f (x) has degree less than n over F0, that is, [E0 : F0] < n.
Suppose that [E : F ] = n > 1, where E is a splitting field of f (x) over F . Since n > 1, f (x) has
an irreducible factor p(x) of degree r > 1. Let p ′(t ) be the corresponding irreducible factor
of f ′(t ). Since E splits f (x), a full complement of roots of f (x), and so, a priori, of roots of
p(x), are in E . Thus there is a v ∈ E such that p(v) = 0; thus [F (v) : F ] = r . Similarly, there is a
w ∈ E ′ such that p ′(w) = 0. By the previous theorem; there is an isomorphismσ of F (v) onto
F ′(w) with the property that σ(α) =α′, for every α ∈ F .
Since [F (v) : F ] = r > 1,

[E : F (v)] = [E : F ]/[F (v) : F ] = n/r < n

We claim that E is a splitting field for f (x) considered as polynomial over F0 = F (v), for no
subfield of E , containing F0 and hence F , can split f (x), since E is assumed to be a splitting
field for f (x) considered as a polynomial over F0 = F (v), for no subfield of E , containing
F0 and hence F , can split f (x), since E is assumed to be a splitting field of f (x) over F .
Similarly E ′ is a splitting field for f ′(t ) over F ′

0 = F ′(w). By our induction hypothesis there
is an isomorphism φ of E onto E ′ such that φ(a) = σ(a) for all a ∈ F0. But for every α ∈ F ,
σ(α) =α′ hence for every α ∈ F ⊂ F0, φ(α) =α′. This complete the proof by induction.

Remark III.17. Any two splitting fields of the same polynomial over F are isomorphic and
by an isomorphism leaving every element of F fixed, we are justified of speaking about "the"
splitting field, rather than a splitting field, for it is essentially unique.

Example 4.0.68. 1. Let F be any field and let p(x) = x2 +αx +β, α, β ∈ F , be in F [x]. If K
is any extension of F in which p(x) has a root, a, then the element b =−α−a also in K
is also a root of p(x). If b = a it is easy to check that p(x) must then be p(x) = (x −a)2,
and so both roots of p(x) are in K . If b 6= a, then be p(x) = (x −a)2, and so both roots of
p(x) are in K . If b 6= a then again both roots of p(x) are in K . Consequently, p(x) can be
split by an extension of degree 2 of F .

2. Let F be the field of rational numbers and let f (x) = x3 − 2. in the field of complex
numbers the three roots of f (x) are 3

p
2, ω3

p
2, ω23

p
2, where ω = (−1+p

3i )/2 and
where 3

p
2 is a real cube root of 2. Now F (3

p
2) cannot split x3 − 2, for, as a subfield

of the real field, it cannot contain the complex, but not real, number ω3
p

2. Without
explicitly determining it, what can we say about E, the splitting field of x3 −2 over F ?
We know that [E : F ] ≤ 3! = 6; by the above remark, since x3 −2 is irreducible over F and
since [F (3

p
2) : F ] = 3. The only way out is [E : F ] = 6. We could, of course, get this result

by making two extensions F1 = F (3
p

2) and E = F1(ω) and showing that ω satisfies an
irreducible quadratic equation over F1.
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3. Let F be the field of rational numbers and let

f (x) = x4 +x2 +1 ∈ F [x].

We claim that E = F (ω) whereω= (−1+p
3i )/2 is a splitting field of f (x). Thus [E : F ] =

2, far short of the maximum possible 4! = 24.

5 Construction with straightedge and compass

Definition 5.0.69. A real number α is said to be a constructible number if by the use of
straightedge and compass alone we can construct a line segment of length α. We assume that
we are given some fundamental unit length.

Recall that from high-school geometry, we can construct with a straightedge and com-
pass a line perpendicular to and a line parallel to a given line through a given point. From
this it is easy exercise to prove that ifα and β are constructible number then so areα±β, αβ
and when β 6= 0,α/β (Exercise!). Therefore the set of constructible numbers form a subfield,
W , of the field of real numbers. In particular, since 1 ∈W must contain Q, the field of ratio-
nal numbers. We wish to study the relation of W to the rational field. If w ∈W , we can reach
w from the rational field by a finite number of constructions.

Definition 5.0.70. Let F be any subfield of the field of the real numbers. Consider all the
points (x, y) in the real eucliedean plane both of whose coordinates x and y are in F ; we call
the set of these point the plane of F .

In order to see the structure of the constructible number, we consider which construc-
tion In the plane of a field, we can consider straight line and circle:

1. Any straight line joining two points in the plane of F has an equation of the form ax +
by + c = 0 where a, b, c are all in F (Exercise!).

2. Moreover, any circle having as center a point in the plane of F and having as radius an
element of F has an equation of the form x2 + y2 +ax +by + c = 0, where all of a, b, c
are in F (Exercise!).

Let’s see now the behavior of their intersection:

1. Given two line in F which intersect in the real plane, the their intersection point is a
point in the plane of F (Exercise!).

2. The intersection of a line in F and a circle in F need not yield a point in the plane of
F . But, using the fact that the equation of a line in F is of the form ax +by + c = 0 and
that the equation of a circle in F is of the form x2 + y2 +d x + e y + f = 0, where a, b, c,
d , e, f are all in F, we can show that when a line and a circle of F intersect in the real
plane, they intersect either in a point in the plane of F or in the plane of F (

p
γ), for

some positive γ in F (Exercise!).
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3. The intersection of two circles in F can be realized as that of a line in F and a circle in
F , for if these two circles are x2+ y2+a1x+a2 y +c1 = 0 and x2+ y2+a2x+b2 y +c2 = 0,
then their intersection is the intersection of either of these with the line (a1 − a2)x +
(b1−b2)y+(c1−c2) = 0, so also yields a point either in the plane F or of F (

p
γ) for some

positive γ in F .

As a consequence of all this, lines and circles of F lead us to points either in F or in quadratic
extension of F . If we now are in F (

p
γ1) for some quadratic extension of F . If we now are in

F (
p
γ1) for some quadratic extension of F , the lines and circles in F (

p
γ1) intersect in points

in the plane of F (
p
γ1,

p
γ2) where γ2 is a positive number in F (

p
γ1). A point is constructible

from F if we can find real numbers λ1, ... , λn , such that λ2
1 ∈ F , λ2

2 ∈ F (λ1), λ2
3 ∈ F (λ1,λ2), ....,

λ2
n ∈ F (λ1, ...,λn−1), such that the point is in the plane of F (λ1, ...,λn).

Conversely, if γ ∈ F is such that
p
γ is real then we can realize γ as an intersection of lines

and circles in F (Exercise!). Thus, a point is constructible from F if and only if we can find a
finite number of real numbers λ1, ..., λn such that

1. [F (λ1) : F ] = 1 or 2;

2. [F (λ1, ...,λi ) : F (λ1, ...,λi−1] = 1 or 2 for i = 1,2, ....,n;

and such a point lies in the plane of F (λ1, ...,λn).
Then we have,

Theorem III.18. The real number α is constructible if and only if we can find a finite number
of real numbers λ1, ... , λn such that

1. λ2
1 ∈Q,

2. λ2
1 ∈Q(λ1, ...,λi−1), for i = 1,2, ...,n,

such that α ∈Q(λ1, ...,λn).

Proof. We have defined a real number α to be constructible if by use of straightedge and
compass we can construct a line segment of length α. But this translates, in terms of the
discussion above, into: α is constructible if starting from the plane of the rational numbers,
Q, we can imbedα in a field obtained fromQ by a finite number of quadratic extensions.

Corollary 5.0.71. If α is constructible then α lies in some extension of the rationals of degree
a power of 2.

Proof. We can compute the degree ofQ(λ1, ...,λn) overQ, by the previous theorem,

[Q(λ1, ...,λn),Q] = [Q(λ1, ...,λn) :Q(λ1, ...,λn−1)]×[Q(λ1, ...,λn−1) :Q(λ1, ...,λn−2)]×....×[Q(λ1) :Q]

Each term of the product is either 1 or 2, we get that

[Q(λ1, ...,λn),Q] = 2r
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We get then a important criterion for non constructibility,

Corollary 5.0.72. If the real number α satisfies an irreducible polynomial over the field of
rational number of degree k, and if k is not a power of 2, then α is not constructible.

Proof. If α is constructible, by the corollary above, there is a subfield K of the real field such
that α ∈ K and such that [K : Q] = 2r . however, Q(α) ⊂ K , whence [Q(α) : Q]|[K : Q] = 2r ;
thereby [Q(α),Q] is also a power of 2. However, if α satisfies an irreducible polynomial of
degree k overQ, we have proved that [Q(α) :Q] = k.

The last corollary enables us to settle the ancient problem of trisecting an angle by straight-
edge and compass alone, for we prove:

Theorem III.19. It is impossible, by straightedge and compass alone, to trisect 60ř.

Proof. If we could trisect 60◦ by straightedge and compass alone, then the lengthα= cos(20◦)
would be constructible. At this point, let us recall the identity α = cos(20◦) would be con-
structble. At this point, let us recall the identity cos(3θ) = 4cos3(θ)−3cos(θ). Putting θ = 20◦

and remembering that cos(60◦) = 1/2, we obtain 4α3 −3α = 1/2, whence 8α3 −6α−1 = 0.
Thus α is a root of the polynomial 8x3 − 6x − 1 over the rational field. However, this poly-
nomial is irreducible over the rational field (Exercise!) and since its degree is 3, which is not
a power of 2, thus not constructible. Hence, 60◦ cannot be trisected by straightedge and
compass.

Another ancient problem is that of duplicating the cube, that is, of constructing a cube
whose volume is twice that of a given cube.

Theorem III.20. By straightedge and compass it is impossible to duplicate the cube.

Proof. If the original cube is the unit cube, this entails constructing a length α such that
α3 = 2. Since the polynomial x3−2 is irreducible over the rationals (Exercise!), againα is not
constructble.

We wish to exhibit yet another geometric figure which cannot be constructed by straight-
edge and compass, namely, the regular septagon.

Theorem III.21. It is impossible to construct a regular septagon by straightedge and compass.

Proof. To carry out such a construction would require the constructibility ofα= 2cos(2π/7).
However, we claim that α satisfies x3 + x2 − 2x − 1 (Exercise!) and that this polynomial is
irreducible over the files of rational number (Exercise!), thus α is not constructible.

6 Finite field

Definition 6.0.73. We say that a field is a finite field if it has a finite number of elements.

Lemma 6.0.74. Let F be a finite field with q elements and suppose that F ⊂ K where K is also
a finite field. Then K has qn elements where n = [K : F ].
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Proof. K is a vector space over F and since K is finite it is certainly finite dimensional as a
vector space over F . Suppose that [K : F ] = n; then K has a basis of n element in K has a
unique representation in the form α1v1 + ...+αn vn where αn vn where α1, ...,αn are all in F .
Thus the number of elements in K is the number of α1v1 + ...+αn vn as the α1, ..., αn range
over F . Since each coefficient can have q values K must clearly have qn elements.

Corollary 6.0.75. Let F be a finite field; then F has pm elements where the prime number p
is the characteristic of F .

Proof. Since F be a finite number of elements, we know that f .1 = 0 whee f is the number of
elements in F . Thus F has characteristic p for some prime number p. Therefore F contains
a field isomorphic to Fp := Z/pZ. Since Fp has p elements, F has pm elements where m =
[F : Fp ] by the previous lemma.

Corollary 6.0.76. If the finite field F has pm elements then every a ∈ F satisfies apm = a.

Proof. If a = 0 the assertion is trivial. On other hand, the nonzero elements of F form a
group under the multiplication of order pm −1 thus by Lagrange’s theorem apm−1 = 1 for all
a 6= 0 in F . Multiplying this relation by a we obtain that apm = a.

From this last corollary we can easily pass to

Lemma 6.0.77. If the finite field F has pm elements then the polynomial xpm −x in F [x] factor
in F [x] as

xpm −x = ∏
λ∈F

(x −λ)

Proof. We have proven that the polynomial xpm − x being a polynomial of degree pm has at
most pm roots in F . However, by the previous corollary we know pm such a roots, namely all
the element of F . Thus, we can conclude that xpm −x =∏

λ∈F (x −λ).

Corollary 6.0.78. If the field F has pm elements then F is the splitting field of the polynomial
xpm −x.

Proof. We already know that xpm − x certainly splits in F . However, it cannot split in any
smaller field for that field would have to have all the roots of this polynomial and so would
have to have at least pm elements. Thus F is the splitting field of xpm −x.

We have proven that any two splitting fields over a given field of a given polynomial are
isomorphic. Thus, we have the following result:

Lemma 6.0.79. Any two finite fields having the same number of elements are isomorphic.

Proof. If these fields have pm elements, by the above corollary they are both splitting fields
of the polynomial xpm −x over Fp =Z/pZwhence they are isomorphic.
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Thus for any integer m and any prime number p there is, up to isomorphism, at most one
field having pm elements. We want now to know if for any prime p and any integer m there
is a field gavin pm elements. When this is done we shall know that there is exactly one field
having pm elements where p is an arbitrary prime and m an arbitrary integer. For this recall
that in elementary calculus the equivalence is shown between the existence of multiple root
of a function and the simultaneous vanishing of the function and its derivative at a given
point. Even in our setting, where F is an arbitrary field such an interrelation exists.

Corollary 6.0.80. If F is a field of characteristic p 6= 0, then the polynomial xpn −x ∈ F [x], for
n ≥ 1, has distinct roots.

Proof. The derivative of xpn −x is pn xpn−1 −1 =−1, since F is of characteristic p. Therefore,
xpn − x and its derivative are certainly relatively prime, which, by Corollary 2.0.51, implies
that xpn −x has no multiple roots.

Lemma 6.0.81. For every prime number p and every positive integer m there exists a field
having pm elements.

Proof. Consider the polynomial xpm − x in Fp [x], the ring of polynomials in x over Fp , the
field of integers mop p. Let K be the splitting field of this polynomial. In K , let F = {a ∈
K |apm = a}. The elements of F are thus the roots of xpn−x, which are distinct by the previous
corollary; whence F has pm elements. We now claim that F is a field. If a, b ∈ F since the
characteristic is p, (a±b)pm = apm±bpm = a±b, hence a±b ∈ F . Consequently F is a subfield
of K and so is a field. Having exhibited the field F having pm elements we have proved the
lemma.

As a consequence,

Theorem III.22. For every prime number p and every positive integer m there is a unique
field having pm elements.

Lemma 6.0.82. Let G be a finite abelian group enjoying the property that the relation xn = e
is satisfied by at most n elements of G, for every integer n. Then G is a cyclic group.

Proof. If the order of G is a power of some prime number q then the result is very easy. For
suppose that a ∈G is an element whose order is as large as possible; its order must be qr for
some integer r . The elements e, a, a2, ... , aqr −1 give us qr distinct solutions of the equation
xqr = e, which, by our hypothesis, implies that these are all the solution of this equation.
Now, if b ∈G its order is q s where s ≤ r , hence bqr = (bq s

)qr−s = e. By the observation made
above this forces b = ai for some i , and so G is cyclic.
The general finite abelian group can be realize as G = Sq1 ...Sqk where qi are the distinct
prime divisors of o(G) and where the Sqi are the Sylow subgroups of G . Moreover, every
element g ∈ G can be written in a unique way as g = s1...sk where si ∈ Sqi is one of xn = e
in G so that each Sqi inherits the hypothesis we have imposed on G . By the remarks of the
first paragraph of the proof, each Sqi is a cyclic group; let ai be a generator of Sqi . We claim
that c = a1....ak is a cyclic generator of G . To verify this all we must do is prove that o(G)
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divides m, the order of c. Since cm = e, we have that am
1 am

2 ...am
k = e. By the uniqueness of

representation of an element of G as a product of elements in the Sqi , we conclude that each
am

i = e. Thus o(Sqi )|m, for every i . Thus o(G) = o(Sq1 )...o(Sqk )|m. However, m|o(G) and so
o(G) = m. This proves that G is cyclic.

Lemma 6.0.83. Let K be a field and let G be a finite subgroup of the multiplicative group of
nonzero elements of K . Then G is a cyclic group.

Proof. Since K is a field, any polynomial of degree n in K [x] has at most n roots in K . Thus
in particular, for any integer n, the polynomial xn −1 has at most n roots in K , and all the
more so, at most n roots in G . The hypothesis of the lemma is satisfied, so G is cyclic.

Theorem III.23. The multiplicative group of nonzero elements of a finite field is cyclic.

Proof. Let F be a finite field. We apply the previous lemma with F = K and G = the group of
the nonzero elements of F .

Lemma 6.0.84. If F is a finite field and α 6= 0, β 6= 0 are two elements of F then we can find
elements a and b in F such that 1+αa2 +βb2 = 0.

Proof. If the characteristic of F is 2, F has 2n elements and every element x in F satisfies
x2n = x. Thus every element in F is a square. In particular α−1 = a2 for some a ∈ F . Using
this a and b = 0, we have 1+αa2 +βb2 = 1αα−1 + 0 = 1+ 1 = 0, the last equality being a
consequence of the fact that the characteristic of F is 2.
If the characteristic of F is an odd prime p, F has pn elements. Let Wα = {1+αx2|x ∈ F }. We
must check how often 1+αx2 = 1+αy2. But this relation forcesαx2 =αy2 and so, sinceα 6= 0,
x2 = y2. Finally, this leads to x = ±y . Thus for we get 1 ∈ Wα. Thus Wα has 1+ (pn −1)/2 =
(pn +1)/2 elements. Similarly, Wβ = {−βx2|x ∈ F } has (pn +1)/2 elements. The intersection
is thus nonempty since sum of their cardinality is pn +1 . Let c ∈ Wα∩Wβ. Since c ∈ Wα,
c = 1+αa2, for some a ∈ F ; since c ∈Wβ, c =−βb2 for some b ∈ F . Therefore, 1+αa2 =−βb2,
which, on transposing yields the desired result 1+αa2 +βb2 = 0.
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Chapter IV

Galois theory

(Notes of Joel Spencer) Galois Theory involves the study of arbitrary fields and fields can
come in many different guises. However, throughout these notes we shall restrict ourselves
to fields whose elements are complex numbers. That is, all of our fields F (even when we
forget to mention it!) will have F ⊂C.

1 Galois Basics

Definition 1.0.85. Let F ⊂ K ,K ′, all fields. We say σ : K → K ′ is an isomorphism over F if

1. σ is a bijection from K to K ′

2. σ(a +b) =σ(a)+σ(b) for all a,b ∈ K

3. σ(ab) =σ(a)σ(b) for all a,b ∈ K

4. σ(c) = c for all c ∈ F

We say that the elements of F are fixed by σ. The most important case is when K = K ′.

Remark IV.1. However, that it is acceptible that other elements (not in F ) are also fixed by σ.

Now we come to the object of study.

Definition 1. Let F ⊂ K , both fields. We define the Galois Group of K over F , denote Gal (K ,F )
as follows. The elements are all of the automorphims of K over F . The group operation is the
composition of automorphism. That is, given two automorphismsσ,τwe define their product
στ by

(στ)(a) = τ(σ(a)) (IV.1)

We define the inverse σ−1 by

(σ−1)(b) is that a such that σ(a) = b (IV.2)

It is not hard to prove that στ ∈ Gal (K ,F ) and σ−1 ∈ Gal (K ,F ) for any σ ∈ Gal (K ,F ) and
τ ∈ Gal (K ,F ). The identity element of this group is the identity map I d : K → K sending an
element of K to it self.
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Remark IV.2. Of course, there is at least one element in Gal (K ,F ) which is the identity map
corresponding to the identity element.

Example 1.0.86. Consider Gal (C,R), the automorphisms of the complex numbers C over the
real numbers R. We claim that complex conjugation, defined by (for a,b real)

σ(a +bi ) = a −bi (IV.3)

It is not hard to check that this define a automorphism of Cwhich stabilize R.
There is another element of Gal (C : R), of course, the identity map of C. In fact there are the
only two elements of Gal (C,R)

Theorem 1.0.87. The only elements of Gal (C :R) are complex conjugation σ and the identity
I d.

Proof. Let τ ∈Gal (R :R) and consider τ(i ). As i 2 +1 = 0

0 = τ(0) = τ(i 2 +1) = τ(i )2 +1 (IV.4)

That is, denoting τ(i ) by z, z must satisfy z2 +1 = 0. There are only two possibilities for z,
either z = i or z = −i . Further, the value of z = τ(i ) determines the entire map τ. This is
because any complex number α can be written α= a +bi with a,b real and so

τ(α) = τ(a)+τ(b)τ(i ) = a +bz (IV.5)

as τ fixes all real numbers. When z = i we have τ(α) =α so that τ is the identity. When z =−i
we have τ(a +bi ) = a −bi and so τ is complex conjugation σ.

We therefore have Gal (C,R) = {e,σ}. The identity acts as the identity of the group and

σ2(a +bi ) =σ(σ(a +bi )) =σ(a −bi ) = a +bi (IV.6)

so that σ2 = e. We have a group on two elements. We can further write

Gal (C,R) ∼= (Z/2Z,+) (IV.7)

by mapping I d to 0 and σ to 1.

Remark IV.3. BAn expression such as σ3(α) does not mean the cube of σ(α) but rather the
result of applying σ three times to α, in this case, σ(σ(σ(α))). To say, for example, that σ3 = e,
would be to say that σ(σ(σ(α))) =α for all α.

The proof ideas in Theorem 1.0.87 can be greatly generalized.

Theorem 1.0.88. Let F ⊂ K ,K ′, all fields. Let σ : K → K ′ be an isomorphism over F as given
by Definition 1.0.85. Let α ∈ K and let α be a root of some p(x) ∈ F [x]. That is, we may write

p(x) = a0 +a1x + . . .+an xn ∈ F [x]

with the coefficients in F . Set β=σ(α) Then β is a root of p(x).
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Proof. As

0 = p(α) = a0 +a1α+ . . .+anα
n

we apply σ to both sides and (noting, critically, that as ai ∈ F , σ(aiα
i ) =σ(ai )σ(α)i = aiβ

i )

0 =σ(0) = a0 +a1β+ . . .+anβ
n

as desired.

Theorem 1.0.89. Let F ⊂ K ,K ′, all fields. Assume K = F (α1, . . . ,αs). Let σ : K → K ′ be an
isomorphism over F as given by Definition 1.0.85. Then σ is determined by the values of
σ(α1), . . . ,σ(αs).

Proof. For any mononomial κ= cαm1
1 · · ·αms

s with C ∈ F , the value of σ(κ) is determined by

σ(κ) = cσ(α1)m1 · · ·σ(αs)ms

Any polynomialλ inα1, . . . ,αs is the sum of monomials and henceσ(λ) is determined. When
K is an extension of F of finite dimension (which is pretty much all we look at) every λ ∈ K
is such a polynomial and so σ is determined on K . But even in the general case every λ ∈ K
can be written as the quotient λ = λ1/λ2 of polynomials and hence σ(λ) = σ(λ1)/σ(λ2) is
still determined.

Here is a powerful consequence.

Theorem 1.0.90. Let F ⊂ K , both fields, and assume only that [K : F ] is finite. Then the Galois
Group Gal (K ,F ) (as given by Definition 1) is finite.

Proof. Suppose n = [K : F ]. Write K = F (α1, . . . ,αs) for someα1, . . . ,αs . Letσ ∈Gal (K ,F ) and
set βi = σ(αi ) for each i . Each αi satisfies some polynomial pi (x) ∈ F [x] of degree at most
n. From theorem 1.0.88, βi satisfies the same polynomial. But we know that a polynomial
of degree at most n can have at most n roots so there are at most n choices for βi . These
choices, from Theorem 1.0.89, determine σ on all of K .

Remark IV.4. BSuppose that in Theorem 1.0.90 we have K = F (α1, . . . ,αs). Each σ(αi ) must
be one of a finite number of choices. However, not all choices necessarily give a good σ. For
example, suppose we wrote K = Q(

p
2,
p

3,
p

6). For σ ∈ Gal (K ,F ) we must have σ(
p

2) =
±p2, σ(

p
3) = ±p3, σ(

p
6) = ±p6. But we don’t get all eight choices. If, say, σ(

p
2) = −p2,

σ(
p

3) =+p3, then we must have (as σ sends products to products) σ(
p

6) =−p6.

Now we can give a wide class of examples for which the Galois Group is determined.

Theorem 1.0.91. Let F ⊂ K , both fields, and assume that K = F (α). Let p(x) ∈ F [x] be the
minimal polynomial for α. Suppose further that β ∈ K is also a root of p(x). Then there is an
automorphism σ of K over F with σ(α) =β.
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Proof. Set n to be the degree of p(x). Then

K = {a0 +a1α+ . . .+an−1α
n−1 : a0, . . . , an−1 ∈ F }

As p(x) is a minimal polynomial for α it must be irreducible (over F ) and hence it must be a
minimal polynomial for β as well. Thus [F (β) : F ] = n. But as β ∈ F (α), F (β) ⊆ F (α). As the
dimensions over F are the same we deduce that F (β) = K . Thus we can write

K = {a0 +a1β+ . . .+an−1β
n−1 : a0, . . . , an−1 ∈ F }

We define σ by

σ(a0 +a1α+ . . .+an−1α
n−1) = a0 +a1β+ . . .+an−1β

n−1

The key point is that products are sent to products. Write p(x) = xn +bn−1xn−1 + . . .+b0.
In multiplying elements of the form a0 + a1α+ . . .+ an−1α

n−1 we use the reduction αn =
−bn−1α

n−1 − . . .−b0. As β has the same minimal polynomial in multiplying elements of the
form a0 +a1β+ . . .+an−1β

n−1 we use the same reduction βn =−bn−1β
n−1 − . . .−b0.

Theorem 1.0.92. Let F ⊂ K , both fields, and assume that K = F (α). Let p(x) ∈ F [x] be the
minimal polynomial for α. Let α1 =α,α2, . . . ,αs be all the roots of p(x) in K . Then the Galois
Group Gal (K ,F ) (as given by Definition 1) will have precisely s elements σ1 = e,σ2, . . . ,σs .

Proof. As K = F (α), σ is determined (Theorem 1.0.89) by σ(α) which must be (Theorem
1.0.88) one of α1, . . . ,αs . From Theorem 1.0.91 each of these give a valid σi ∈Gal (K ,F ).

2 Examples

In all our examples the ground field shall be Q and the extension field will be a subfield of
the complex numbers C.

We take as basic that the only nonzero rational numbers C for which
p

c ∈ Q are those
positive C for which each prime factor p appears an even number of times. In particular,p

2,
p

3,
p

3/2 are all irrational.

2.1 K =Q(
p

2,
p

3).

As
p

2 has minimal polynomial x2 −2, Q(
p

2) has basis 1,
p

2 over Q. Now we need a simple
result:

Theorem 2.1.1.
p

3 6∈Q(
p

2)

Proof. If it were we would have p
3 = a +b

p
2

with a,b ∈Q. Squaring both sides

3 = a2 +2b2 +2ab
p

2

As 1,
p

2 is a basis the coefficient of
p

2 would need be zero. That is, 2ab = 0. So either a = 0
or b = 0.
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1. b = 0: Then
p

3 = a ∈Q, contradiction.

2. a = 0. Then
p

3 = b
p

2 so
p

3/2 = b ∈Q, contradiction.

From Theorem 2.1.1 and that
p

3 satisfies a quadratic (namely, x2 −3) over Q(
p

2), 1,
p

3
is a basis for Q(

p
2,
p

3) over Q(
p

2) and so 1,
p

2,
p

3,
p

6 is a basis for K over Q. That is, we
may write

K =Q(
p

2,
p

3) = {a +b
p

2+ c
p

3+d
p

6 : a,b,c,d ∈Q} (IV.8)

and every α ∈ K has a unique expression in this form.

Now we turn to the Galois Group Gal (K ,Q). Any σ ∈ K has σ(
p

2) = ±p2 and σ(
p

3) =
±p3 which gives four (Bthis is 2×2) possibilities. The value of σ on

p
2,
p

3 determines the
value on all of K . The four elements of the Galois Group are I d ,σ1,σ2,σ3 where

I d(a +b
p

2+ c
p

3+d
p

6) = a +b
p

2+ c
p

3+d
p

6

σ1(a +b
p

2+ c
p

3+d
p

6) = a −b
p

2+ c
p

3−d
p

6

σ2(a +b
p

2+ c
p

3+d
p

6) = a +b
p

2− c
p

3−d
p

6

σ3(a +b
p

2+ c
p

3+d
p

6) = a −b
p

2− c
p

3+d
p

6

Check that these really are automorphisms, that they are bijections that send sums to
sums and products to products. This will actually come out of more general stuff later. (Ex-
ercise!)

What does the group Gal (K ,Q) look like. The identity is the identity, no problem. Any σ
when squared gives the identity. For example

σ2
1(a +b

p
2+ c

p
3+d

p
6) =σ1(a −b

p
2+ c

p
3−d

p
6) = a +b

p
2+ c

p
3+d

p
6

We can also see this by noticing that either σ(
p

2) = p
2 or σ(

p
2) = −p2 but in either case

σ2(
p

2) =p
2 and similarlyσ2(

p
3) =p

3 so thatσ2 = I d . We also calculate that if you multiply
any two of σ1,σ2,σ3 in either directtion you get the other third one. For example

σ2(σ1(a +b
p

2+ c
p

3+d
p

6)) =σ2(a −b
p

2+ c
p

3−d
p

6) = a −b
p

2− c
p

3+d
p

6

We have the Klein Vierergruppe, aka the Fourgroup, which is isomorphic to Z/2Z×Z/2Z.
Actually, there are only two groups with four elements (up to isomorphism, of course), the
cyclic group Z/4Z and the Vierergruppe Z/2Z×Z/2Z so once it isn’t the first it must be the
second!
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2.2 K =Q(ε) with ε= e2πi /5

ε satisfies x5 −1 = 0 and, as ε 6= 1, it satisfies p(x) = 0 with

p(x) = x5 −1

x −1
= x4 +x3 +x2 +x +1 (IV.9)

This is irreducible (one can show this by replacing x by x +1 giving x4 +5x3 +10x2 +5x +5
and using Eisenstein’s criterion) so [K :Q] = 4 and we write

K = {a +bε+ cε2 +dε3 : a,b,c,d ∈Q} (IV.10)

The minimal polynomial (IV.9) has roots ε,ε2,ε3,ε4. From Theorem 1.0.92 the Galois
Group Gal (K ,Q) consists of four automorphism which we shall labelσ1,σ2,σ3,σ4. They are
determined by their values on ε and we shall let σ j be that automorphism with σ j (ε) = ε j .
Note that σ1 is the identity and σ4 is the complex conjugation.

What is the product σ jσk . Lets see what it does to ε.

(σ jσk )(ε) =σ j (σk (ε)) =σ j (εk ) =σ j (ε)k = (ε j )k = ε j k (IV.11)

Then, σ jσk =σ j k . But we only have four automorphisms. What does it mean to say σ3σ3 =
σ9. The key is that ε5 = 1 so that we can reduce ε j k by reducing j k modulo 5. As ε9 = ε4

we have σ3σ3 = σ4. So we can and do say σ jσk = σ j k with the understanding that j k is
computed modulo 5. With this we have

Gal (K ,Q) ∼= (
Z/5Z

)∗ (IV.12)

where we associate σ j with j . Finally (Z/5Z)∗ ∼= (Z/4Z,+) (the cyclic group, not the Vier-
ergruppe) by associating 1,2,3,4 with 0,1,3,2 respectively.

2.3 K =Q(21/3,ω) withω= e2πi /3

The polynomial
p(x) = x3 −2 (IV.13)

is irreducible (by Eisenstein’s criterion, or simply that, as a cubic, it has no rational roots)
and its roots are α,β,γ where for convenience we write

α= 21/3,β= 21/3ω,γ= 21/3ω2 (IV.14)

Any field that contains 21/3,ω contains α,β,γ and any field that contains α,β,γ contains
21/3,ω so we may also write K =Q(α,β,γ), so K is the splitting field of p(x) overQ. A basis for
Q(α) over Q is 1,α,α2. As all elements of Q(α) are real, ω 6∈Q(α). As ω satisfies the quadratic
1+ x + x2 = 0 over Q(α), a basis for K =Q(α,ω) over Q(α) is 1,ω. Hence a basic for K over Q
is 1,α,α2,ω,ωα,ωα2 and we can write

K = {a +bα+ cα2 +dω+eωα+ f ωα2 : a,b,c,d ,e, f ∈Q} (IV.15)
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and each ζ ∈ K has a unique such representation.
What are the automorphisms σ ∈ Gal (K ,Q)? As K = Q(α,β,γ), σ is determined by its

values on α,β,γ. Further, as α,β,γ satisfy the same irreducible (IV.13), σ of any of them
must be one of them. Further, as σ must be a bijection, σ cannot send two of α,β,γ to the
same value and hence σ must be a permutation on α,β,γ. This gives that there are at most
six automorphisms and that Gal (K ,Q) is isomorphic to a subgroup of S3, the full symmetric
group on three elements, here α,β,γ.

Actually, all permutations of α,β,γ yield automorphisms of K and so

Gal (K ,Q) ∼= S3 (IV.16)

This actually will follow from some general stuff but we can give an idea here. Two auto-
morphisms are easy, the identity (we always have the identity) and complex conjugation σ.
We do have to check that complex conjugation is a bijection from K to itself. As σ(α) = α

and σ(ω) = ω2 ∈ K it sends K to K and since σ2 = I d it must be a bijection. (That is,
σ−1(ζ) = σ(ζ).) This σ corresponds to the permutation that keeps α fixed and transposes
β,γ.

Here is another τ ∈Gal (K ,Q). Generate it by setting τ(α) =β and τ(ω) =ω. Then

τ(β) = τ(αω) = τ(α)τ(ω) =βω= γ (IV.17)

and

τ(γ) = τ(βω) = τ(β)τ(ω) = γω=α (IV.18)

so it cycles α to β to γ back to α. With the representation of (IV.15)

τ(a +bα+ cα2 +dω+eωα+ f ωα2) = a +bωα+ cω2α2 +dω+eω2α+ f α2 (IV.19)

In this form one need show τ is bijective (pretty easy), that τ(ζ1 + ζ2) = τ(ζ1)+τ(ζ2) (quite
easy), and that τ(ζ1ζ2) = τ(ζ1)τ(ζ2) (lengthy, unless you use some tricks).

Indeed, here is another approach to show that τ is indeed an automorphism from K
to K . Consider the intermediate field L = Q(ω). We first claim that p(x) given by (IV.13) is
irreducible over L. As it is a cubic, if it reduced it would have a root in L. So either α,β =
αω,γ = αω2 would be in L. As ω ∈ L if any of α,β,γ were in L then all three would be in
L, in particular α ∈ L. But then L would have ω and α and so would be Q(α,ω) = K . As
[L : Q] = 2 6= 6 = [K : Q] that cannot happen. Now α,β have the same minimal polynomial
in L[x] and K = L(α) = L(β), so, there does exist an automorphism τ of K that preserves L
and has τ(α) = β. As it preserves L we also have τ(ω) = ω. Since τ preserves L it certainly
preserves the smallerQ and so τ ∈Gal (K ,Q).

Once we have σ,τ ∈ Gal (K ,Q) we have that Gal (K ,Q) is a subgroup of S3 that contains
an element τ of order three and an elementσ of order two. From τ it must have at least three
elements, from σ it can’t have exactly three elements, so it has more than three elements, so
it has all six elements, it is all of S3.
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3 Normal Extensions

Here we are usually dealing with a “ground field" F and an extension field K . Throughout we
will only consider finite extensions K /F . In most examples F is the field of rational numbers
Q. While other examples will be considered, one may well think about F as Q in the first
reading.

Recall the following facts:

Definition 2. Let σ : K1 → K2 be an isomorphism preserving F . Let h(x) = h0 +h1x + . . .+
hw xw ∈ K1[x]. Then σh is that polynomial achieved by applying σ to all of the coefficients.
That is,

(σh)(x) =σ(h0)+σ(h1)x + . . .+ (σhw )xw

We note (σh)(x) ∈ K2[x].

Theorem 3.0.1. If c(x) = a(x)b(x) in K1[x] then (σc)(x) = (σa)(x)(σb)(x) in K2[x]

Proof. Immediate.

Theorem 3.0.2. p(x) ∈ K1[x] is irreducible in K1 if and only if (σp(x)) ∈ K2[x] is irreducible in
K2.

Proof. If p(x) = a(x)b(x) in K1[x] then (σp) = (σa)(σb) in K2[x]. Conversely we may apply
the isomorphism σ−1 so if (σp)(x) = a(x)b(x) in K2[x], p(x) = (σ−1a)(x)(σ−1b(x)) in K1[x].

Theorem 3.0.3. Let f (x) ∈ F [x] be irreducible over F . Let σ : K1 → K2 be an isomorphism
preserving F . Let f (x) = p1(x) · · ·pl (x) be the factorization of f (x) into irreducible factors in
K1[x]. Then f (x) = (σp1)(x) · · · (σpl )(x) is the factorization of f (x) into irreducible factors in
K2[x].

Proof. As f (x) ∈ F [x], (σ f )(x) is f (x). From Theorem 3.0.1, f (x) = (σp1)(x) · · · (σpl )(x) is a
factorization and from Theorem 3.0.2 the factors are irreducible in K2[x].

Theorem 3.0.4. Suppose K is the splitting field of f (x) ∈ F [x] over F . Suppose g (x) ∈ F [x]
is irreducible (over F ) and suppose further that there is an β ∈ K with g (β) = 0. Then g (x)
completely splits into linear factors in K [x].

Proof. Let α1, . . . ,αr denote the roots of f (x) and let β1 = β,β2, . . . ,βs denote the complex
roots of g (x). If the theorem fails we can assume, without loss of generality, that β1 ∈ K and
β2 6∈ K . Set K1 = F (β1), K2 = F (β2). As β1,β2 have the same minimal polynomial g (x) over F
we find an isomorphism σ : K1 → K2 which preserves F and has σ(β1) =β2.

Now we extend the isomorphism σ by adding the roots of f to K1. We do the first step in
some detail.

Let f (x) = p1(x)e1 · · ·pl (x)en and f (x) = (σp1)(x)e1 · · · (σpl )(x)en be the factorizations of f
into irreducible factors over K1 and K2 respectively.

Pick any of the roots of f , say α1 for definiteness. Considering the factorization in K1[x]
it must be a root of precisely one of the irreducible factors. Say, for definiteness. p1(α1) = 0.
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Now look at (σp1)(x). As it is a factor of f (x) its roots all are roots of f (x) and so are from
α1, . . . ,αr . Let αγ1 denote a root of (σp1)(x). (It may be that the root is α1 itself, this isn’t a
problem.) Now we extend σ to an isomorphism σ+ : K1(α1) → K2(αγ1) with σ+(α1) =αγ1.

We continue this process. (Formally, the proof can be done by induction.) At any stage
we have an isomorphism σ∗ : K ∗

1 → K ∗
2 where K ∗

1 ,K ∗
2 are extensions of K1,K2 be various

roots of f (x). If some root α of f (x) is not in K ∗
1 we look at its minimal polynomial p(x) over

K ∗
1 , find a root α′ of (σ∗p)(x) and extend σ∗ be setting σ∗+(α) =α′. This process terminates

with an isomorphism σ f i nal : K f i nal
1 → K f i nal

2 . Here K f i nal
1 = K1(α1, . . . ,αr ) as we have ex-

tended by all the roots of f . The isomorphism σ f i nal from K f i nal
1 must send each root αi of

f (x) ∈ F [x] to another root (possibly itself) and as σ f i nal is a bijection it must permute the

roots and hence K f i nal
2 = K2(α1, . . . ,αr ).

Whats wrong with this? Well, remember that K1 = F (β1) with β1 ∈ F (α1, . . . ,αr ) and so

K f i nal
1 = F (α1, . . . ,αr ). But K2 = F (β2) withβ2 6∈ F (α1, . . . ,αr ) and so K f i nal

2 = F (α1, . . . ,αr ,β2)

is a nontrivial extension of K f i nal
1 . This would mean that [K f i nal

2 : F ] > [K f i nal
1 : F ] which is

impossible as isomorphisms preserve dimension. That is, our original assumption that β1 ∈
F (α1, . . . ,αr ) but β2 6∈ F (α1, . . . ,αr ) is not possible. And this is what we wanted to prove.

Now that we have proven Theorem 3.0.4 we give an important definition that distin-
guishes certain kind of field extensions.

Definition 3.0.5. (Proposition) Suppose F ⊂ K are subfields of C with K a finite extension of
F . We say that the extension K /F is normal if one of the following equivalent assertions holds:

1. There is an f (x) ∈ F [x] with K the splitting field of f (x) over F .

2. Every g (x) ∈ F [x] which is irreducible (over F ) and has a root in K completely splits into
linear factors in K [x].

When this occurs we often say that K is a normal extension of F .

Proof. We’ve already done the hard part. Theorem 3.0.4 gives that condition 1. implies con-
dition 2.. Now assume condition 2.. As [K : F ] is finite write K = F (α1, . . . ,αs) for some finite
number of α1, . . . ,αs . For each αi let pi (x) ∈ F [x] be its irreducible polynomial over F .

We claim K is the splitting field of f (x) where we set f (x) to be the product p1(x) · · ·ps(x).
By Condition 2. all of the roots of each pi (x) are in F and so the extension of F by all of the
roots of f (x) (that is, all of the roots of each pi (x)) is still inside of F . But the roots include
α1, . . . ,αs so the extension must include F (α1, . . . ,αs) which is all of K . That is, the extension
of F by all of the roots of f (x) is precisely K , giving the claim.

Example 3.0.6. 1. K = Q(21/3) is not a normal extension of Q as the polynomial x3 −2 ∈
Q[x] (irreducible by Eisenstein’s criterion) has one root in K but its other roots are not in
K .

2. K = Q(
p

2,
p

3) is a normal extension of Q as the polynomial (x2 −2)(x2 −3) has rootsp
2,−p2,

p
3,−p3 and extendingQ by these four roots gives precisely K .
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3. K = Q(21/3,ω) (with ω = e2πi /3) is a normal extension of Q as the polynomial x3 −2 ∈
Q[x] has roots 21/3,21/3ω,21/3ω2 and extendingQ by these three roots gives precisely K .

4. Let ε= e2πi /5. Then K =Q(ε) is a normal extension of Q as the polynomial (x5 −1)/(x −
1) = x4 + x3 + x2 + x + 1 has roots ε,ε2,ε3,ε4 and extending Q by these four roots gives
precisely K .

5. Let K =Q(21/4) and F =Q(21/2). Then K is a normal extension of F as the polynomial
x2 −21/2 ∈ F [x] has roots 21/4,−21/4 and extending F by these two roots gives precisely
K .

6. Let K =Q(21/4). Then K is not a normal extension of Q as the polynomial x4 −2 ∈Q[x]
(irreducible by Eisenstein’s criterion) has two roots 21/4,−21/4 in K but the other two
roots 21/4i ,−21/4i are not in K . (One reason why 21/4i 6∈ K is that all elements of K are
real.)

Remark IV.5. BThe last two examples emphasize that when we talk about a normal exten-
sion we are talking about two fields, that K is normal over F . Further, consider the tower
Q ⊂ F ⊂ K , with F = Q(21/2) and K = Q(21/4). Then F is a normal extension of Q as it is an
extension ofQ by the two roots of x2−2. We’ve seen that K is a normal extension of F . But it is
not true (as we just saw) that K is a normal extension ofQ. That is, we do not have a transitive
property for normality.

While we have to be careful about towers of fields, the following is useful and easy.

Theorem 3.0.7. (The Middle Normal Theorem) Let K ⊂ L ⊂ F be fields and assume K /F is
a normal field extension. Then F /L is a normal field extension.

Proof. From Definition 3.0.5, condition 1., there is an f (x) ∈ F [x] with K the splitting field of
f (x) over F . That is, f splits entirely in K [x] with roots α1, . . . ,αr ∈ F and K = F (α1, . . . ,αr ).
But now we can simply consider f (x) as a polynomial in L[x]. It still splits entirely in K [x]
with roots α1, . . . ,αr . As F ⊂ L we have F (α1, . . . ,αr ) ⊂ L(α1, . . . ,αr ) and since α1, . . . ,αr ∈ F
and L ⊂ F , L(α1, . . . ,αr ) ⊂ K so that L(α1, . . . ,αr ) = F and so the F is a normal extension over
L by the same Definition 3.0.5, condition 1. and the same f (x).

Remark IV.6. BUnder the assumptions of Theorem 3.0.7 we do not necessarily have L/K a
normal extension.

Here is a nice property of normal field extensions that say, somehow, that they are nailed
down.

Theorem 3.0.8. Let K /F be a normal field extension. Let K ′ be a field and σ : K → K ′ an
isomorphism over F . (Recall, this means σ(c) = c for all c ∈ F .) Then K ′ = K .

Proof. We can write K = F (α1, . . . ,αs). Then K ′ = F (σ(α1), . . . ,σ(αs)). For each i ,αi andσ(αi )
satisfy the same irreducible polynomial pi (x) ∈ F [x]. As K /F is normal this meansσ(αi ) ∈ K .
Thus K ′ ⊂ K . Similarly, going backward with σ−1, K ⊂ K ′ and so K = K ′.
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Remark IV.7. BTheorem 3.0.8 does not say that each element of K is fixed by σ. Indeed, σ
can move around the elements of K but the set of elements remains the same.

Theorem 3.0.9. Let K /F be a finite field extension. Then there is an extension K ⊂ K nr so that
K nr is a normal field extension of F .

Proof. As [K : F ] is finite we can write K = F (α1, . . . ,αr ) for some finite number of α’s. Let
pi (x) be the minimal polynomial for αi in F [x]. Set K nr to be the splitting field for the
product f (x) = p1(x) · · ·pr (x). As a splitting field it is a normal extension of F and it contains
α1, . . . ,αr and therefore K .

4 Fields to Groups and back again

Let us fix some finite extension F ⊂ K of subfields of C and set G to be the Galois Group
Gal (K ,F ). We will be interested in intermediate fields L, that is, F ⊂ L ⊂ K , and in subgroups
H of G . We will describe first a mapping from fields L to groups H

Definition 4.0.10. Let F ⊂ L ⊂ K be an intermediate field. We define GL , a subgroup of G, by

GL = {σ ∈G :σ(α) =α for all α ∈ L} (IV.20)

That is, GL is those automorphisms of L which fix all elements of L.

GL is a subgroup of G , indeed suppose σ,τ were two automorphims of K over F . Then,
as we have discussed before, so is στ. But further, if σ(α) =α and τ(α) =α for all α ∈ L then

(στ)(α) =σ(τ(α)) =σ(α) =α

for all α ∈ L and so στ ∈ GL . Similarly σ−1 ∈ GL . Finally the identity I d ∈ GL as I d fixes all
elements.

We now will describe first a mapping from groups H to fields L.

Definition 4.0.11. Let H ⊂G be a subroup of the Galois Group. We define K H , an intermedi-
ate field, by

K H = {α ∈ K :σ(α) =α for all σ ∈ H } (IV.21)

That is, K H is those elements of K which are fixed by all automorphisms σ ∈ H.

Set L = K H . L an intermediate field. Indeed, first of all, as all automorphisms σ ∈ G fix
all elements c ∈ F , any element c ∈ F will be fixed by all σ ∈ H , so that F ⊂ L. Now suppose
α,β ∈ L and take anyσ ∈ H . Asσ(α) =α andσ(β) =β, we must haveσ(α+β) =σ(α)+σ(β) =
α+β. Thus α+β ∈ L and similarly αβ,−α,α−1 ∈ L.

Example 4.0.12. Take ground field F =Q and extension K =Q(
p

2,
p

3). The four elements of
the Galois Group G are I d ,σ1,σ2,σ3 where (as done earlier)

I d(a +b
p

2+ c
p

3+d
p

6) = a +b
p

2+ c
p

3+d
p

6
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σ1(a +b
p

2+ c
p

3+d
p

6) = a −b
p

2+ c
p

3−d
p

6

σ2(a +b
p

2+ c
p

3+d
p

6) = a +b
p

2− c
p

3−d
p

6

σ3(a +b
p

2+ c
p

3+d
p

6) = a −b
p

2− c
p

3+d
p

6

G is the Vierergruppe. There are five subgroups (we count the trivial ones here) of G:

{I d}, H1 = {I d ,σ1}, H2 = {I d ,σ2}, H3 = {I d ,σ3}, and G itself.

Of course, K {I d} = K . We want to describe the elements of K H1 . That is, whichα= a+b
p

2+
c
p

3+d
p

6 are fixed by all I d ,σ1. Since, I d is the identity so it fixes everything so we can ignore
it. If we think ofσ1(α) =α as an (easy) equation it is true precisely when b = d = 0. Soα ∈ K H1

if and only if we can write α = a + c
p

3. That is, K H1 = Q(
p

3). Similarly, for α ∈ K H2 the
necessary and sufficient condition is that c = d = 0 soα= a+b

p
2 and K H2 =Q(

p
2). Similarly,

for α ∈ K H3 the necessary and sufficient condition is that b = c = 0 so α= a +d
p

6 and K H3 =
Q(

p
6). Finally, α ∈ K G is such that α = a +b

p
2+ c

p
3+d

p
6 fixed by all I d ,σ1,σ2,σ3. To

be fixed by σ1 forces b = d = 0, to be fixed by σ2 forces C = d = 0, to be fixed by σ3 is now
redundant as it forces b = c = 0. So all of b,c,d must be zero but a can be an arbitrary rational
and so K G =Q.

Now set
L1 =Q(

p
2),L2 =Q(

p
3),L3 =Q(

p
6)

and consider the groups associated with the fieldsQ,L1,L2,L3,K . The easiest is GQ =G, which
is to say that all σ ∈G fix all α ∈Q which is true as G was defined as all automorphisms σ of
K which fix all α ∈Q.

How about GL1 ? Clearly I d ∈ GL1 as I d fixes everything. Also σ2 ∈ GL1 as σ2(a +b
p

2) =
a +b

p
2. But σ1,σ3 6∈GL1 as they send

p
2 to −p2. So GL1 = {I d ,σ2}

How about GL2 ? Clearly I d ∈ GL2 as I d fixes everything. Also σ1 ∈ GL2 as σ1(a + c
p

3) =
a + c

p
3. But σ2,σ3 6∈GL2 as they send

p
3 to −p3. So GL2 = {I d ,σ1}

How about GL3 ? Clearly e ∈ GL2 as I d fixes everything. Also σ3 ∈ GL3 as σ3(a +d
p

6) =
a +d

p
6. But σ1,σ2 6∈GL3 as they send

p
6 to −p6. So GL3 = {I d ,σ3}

Finally, how about GK . Clearly I d ∈GK as I d fixes everything. But the other σ1,σ2,σ3 do
not fix everything and so are not in GK . Thus GK =G.

We can put this all in tabular form.

Field Group
K =Q(

p
2,
p

3) {e}
L1 =Q(

p
2) H2 = {e,σ2}

L2 =Q(
p

3) H1 = {e,σ1}
L3 =Q(

p
6) H3 = {e,σ3}
Q G = {e,σ1,σ2,σ3}

We see we have a one-to-one correspondence. We can go from fields to groups by applying
G−. And we can go from groups to fields by applying K −. And K − and G− are inverses as maps,
if we apply one and then the other we get back where we started.
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Does this always work? No. But it works in important cases and that will be the substance
of the major theorem of Galois Theory. Indeed, not to keep you in suspence, here is that the-
orem. The normal extensions are precisely those extensions for which the correspondence
works.

Theorem 4.0.13. The Galois Correspondence Theorem Let F ⊂ K be subfields of C with
K /F a normal extension. Set G =Gal (K ,F ). Then there is a bijection between the intermedi-
ate fields L, meaning that F ⊂ L ⊂ K and the subgroups H of G. (We include L = F , L = K as
intermediate fields and we include {e} and G itself as subgroups.) The bijection is given by G−
and K − as previously defined. That is, H =GL if and only if L = K H . Thus

K GL = L and GK H = H (IV.22)

Furthermore, the correspondence reverses containment, making L bigger makes H =GL smaller
and making H bigger makes L = K H smaller. The field F is associated with all of G while the
field K is associated with {e}. Setting n = [K : F ] we have n = |G|. Further the sizes are con-
nected, when H =GL

[K : L] = |H | (IV.23)

or, equivalently,
[L : F ] = |G/H | (IV.24)

Remark IV.8. 1. In the listing for K = Q(
p

2,
p

3) above as G has only four elements it
doesn’t take too much work (try it!) to show that {I d}, H1, H2, H3,G are the only sub-
groups. It is not at all clear that we have listed all of the subfields of K . How do we know
there isn’t some other weird intermediate field between Q and K ? After all, these are in-
finite sets so we can’t try everything. It will turn out that from Galois Theory we will be
able to show that the above list gives all of the intermediate fields.

2. Let the ground field F = Q and the extension field K = Q(21/3). Any automorphism
σ : K → K must send 21/3 to a root of x3 −2 but 21/3 is the only root of x3 −2 in K , as
the other roots are not real. Thus we must have σ(21/3) = 21/3 and so σ must be the
identity. That is, G = Gal (K ,Q) = {I d}. As [K : Q] = 3 there are no intermediate fields
except forQ and K themselves. So GQ = {I d} and GK = {I d}. As every element is fixed by
I d, K {I d} = K . So in this case we do not get a bijection between subgroups of the Galois
Group and intermediate fields.

For any extension K /F the following “easy" result is one part of (IV.22), the main part of
the Galois Correspondence Theorem, Theorem 4.0.13.

Theorem 4.0.14. Let F ⊂ K be subfields of C. Then for any intermediate field L

L ⊂ K GL (IV.25)

and for any subgroup H
H ⊂GK H (IV.26)
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Proof. GL is those automorphisms σ such that σ(α) =α for all α ∈ L. That is, all σ ∈GL fix all
α ∈ L. That is, all α ∈ L are fixed by all σ ∈ GL and hence all α ∈ L belong to K GL . Similarly,
K H is those α ∈ K such that σ(α) =α for all σ ∈ H . That is, all σ ∈ H fix all α ∈ K H . That is, all
σ ∈ H are in GK H .

Theorem 4.0.15. Let F ⊂ K be subfields of C with K a Normal extension of F and set G to be
the Galois Group Gal (K ,F ). Then for any intermediate field L

K GL = L (IV.27)

Proof. We already know L ⊂ K GL . Now suppose β ∈ K and β 6∈ L. Our goal is to show β 6∈ K GL .
Recall that as K is a normal extension of F , K is a normal extension of L.

Let p(x) be the minimal polynomial for β ∈ L[x] and let β1 be another root of p(x). As
K is a normal extension of L, β1 ∈ K . Thus there is an isomorphism σ : L(β) → L(β1) which
fixed L and has σ(β) =β1. Applying the Isomorphism Extension Theorem we extend σ to an
isomorphism σ+ with domain K . But as σ+ fixes L and K is normal over L, the range of σ+

must be K . That is, σ+ is an automorphism of K which fixes all α ∈ L but does not fix β. So
β 6∈ K GL .

This has a perhaps surprising followup.

Theorem 4.0.16. Let F ⊂ K be subfields of C with K a normal extension of F . Then there are
only finitely many intermediate fields L.

Proof. From Theorem 4.0.16, L is determined by GL but as G =Gal (K ,F ) is finite there can
be only finitely many subgroups H , only finitely many possible GL .

Theorem 4.0.17. Let K be a finite extension of F , both subfields of C. Then there are only
finitely many intermediate fields L.

Proof. Extend K to K + so that K + is a normal extension of F . From Theorem 4.0.16 there
are only finitely many intermediate fields between F and K + and thus only finitely many
intermediate fields between F and the smaller K .

Theorem 4.0.18. Let F be a subfield of C andα,β ∈C, both algebraic over F . Then there exists
γ ∈Cwith

F (γ) = F (α,β) (IV.28)

Proof. As α,β are algebraic over F , F (α,β) is a finite extension of F . Now for each integer i
set Fi = F (α+iβ). Each of these are subfields of F (α,β) but by Theorem 4.0.17 there are only
finitely many such subfields so there must be i 6= j with Fi = F j . Thus Fi containsα+iβ and
α+ jβ. But then it contains α = 1

j−i [ j (α+ iβ)− i (α+ jβ)] and β = 1
j−i [(α+ jβ)− (α+ iβ)].

Thus Fi must be all of F (α,β) and so we can take γ=α+ iβ.

Theorem 4.0.19. Single Generator Theorem. Let K be a finite extension of F , both sub-
fields of C. Then there is an element γ ∈ K such that K = F (γ).
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Proof. We claim that for any α1, . . . ,αr ∈ C, all algebraic over F , there exists a γ ∈ C with
F (γ) = F (α1, . . . ,αr ). This comes from repeatedly applying Theorem 4.0.18 to replace two of
the generators by one. (Formally we apply induction on r .) Now as K is a finite extension of
F we can write K = F (α1, . . . ,αr ) for some finite set of α’s and then replace them by a single
γ.

Theorem 4.0.20. Let K be a normal extension of F and let L be an intermediate field. Set
r = [K : L] Then GL consists of precisely r automorphisms.

Proof. We know from the Middle Normal Theorem that K is a normal extension of L, which
will allow us basically to ignore F . From the Single Generator Theorem 4.0.19 write K = L(α).
Let p(x) be the minimal polynomial in L[x] withα as a root so that p(x) has degree r . InC let
α=α1,α2, . . . ,αr denote the roots of p(x). As K /L is normal, α1, . . . ,αr ∈ K . As [L(αi ) : L] = r
we must have all L(αi ) = K . For each 1 ≤ i ≤ r as α,αi have the same minimal polynomial
in L[x] there is an isomorphism σi : L(α) → L(αi ) given by setting σi (α) = αi . These are
automorphisms of K fixing L, so elements of GL . Conversely σ ∈ GL is determined by σ(α)
and σ(α) must also satisfy p(x) and so must be one of α1, . . . ,αr and so σ1, . . . ,σr are all of
the automorphisms in GL .

Example 4.0.21. Take K = Q(
p

2,
p

3). The Single Generator Theorem 4.0.19 works and we
can set K = Q(

p
2+p

3). This is not certain a priori, one must check that
p

2+p
3 does in-

deed generate K . Setting γ = p
2+p

3 we check that 1,γ,γ2 = 5+ 2
p

6,γ3 = 11
p

2+ 9
p

3 are
indeed linearly independent. You need to show that the vectors (1,0,0,0), (0,1,1,0), (5,0,0,2),
(0,11,9,0), representing 1,γ,γ2,γ3 are linearly independent. Now set, for example, γ=p

2−p3
and we want a σ ∈ Gal (K ,Q) with σ(γ) = γ. Then σ(γ2) = σ(5+ 2

p
6) = γ2 = 5− 2

p
6 and

σ(γ3) = σ(9+11
p

6) = γ3 = 11
p

2−9
p

3. σ is a linear transformation from K to itself. From
σ(γ2) = γ2 we deduce σ(

p
6) = −p6. Further γ3 −9γ = 2

p
2 and so σ(2

p
2) = γ3 −9γ = 2

p
2.

Thus we must have σ(
p

2) =p
2 and, finally, σ(

p
3) = σ(

p
6)/σ(

p
2) = −p3. That is, σ is one

of the four automorphisms we knew we had.

Now we have shown the size relationship in the Galois Correspondence Theorem 4.0.13.
The only item left is to show that the correspondence between L and GL gives us all of the
subgroups H . This will take an interesting side detour.

5 Symmetric Functions

Now for a change of pace which has applications to what we are doing and is interesting by
itself. Lets look at polynomials in n variables x1, . . . , xn . In our examples we’ll take n = 3 and
call the variables simply x, y, z.

We’ll call a polynomial symmetric if no matter how you permute the variables you get
the same thing. For example: x20 + y20 + z20 or x5 y5 + x5z5 + y5z5. One class is of particular
interest to us. For 1 ≤ i ≤ n define the i -th elementary symmetric polynomial as the sum of
all of the products of i distinct variables. That is, s1 = x + y + z, s2 = x y +xz + y z, s3 = x y z.

Suppose
f (x) = xn +an−1xn−1 + . . .+a0 (IV.29)
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is a monic polynomial of degree n with roots α1,α2, . . . ,αn . (When α is a root of multiplicity
m just write it m times here.) Then

f (x) = xn +an−1xn−1 + . . .+a0 = (x −α1) · · · (x −αn) (IV.30)

Multiplying out the product, xn−1 has coefficient −(α1 + . . .+αn), the constant coefficient
is (−1)nα1 · · ·αn and, in general, the coefficient of xn−i is (−1)i times the value of the i -th
symmetric polynomial si on the valuesα1, . . . ,αn . For n = 3, calling the rootsα,β,γ, we have

a1 =−(α+β+γ) (IV.31)

a2 = (αβ+βγ+αγ) (IV.32)

a3 =−(αβγ) (IV.33)

Theorem 5.0.22. Any symmetric polynomial in x1, . . . , xn can be expressed in terms of the
elementary symmetric polynomials.

This can get pretty bogged down in notation so we will first only show the argument for
n = 3 with variable x, y, z. We say two monic momomials (i.e., with constant coefficient one)
have the same form if they have the same exponents with the same multiplicities. For any
monic monomial g (x) we let g (x) denote the sum of all monomials with that form. Thus for
a,b,c distinct nonnegative integers

xa yb zc := xa yb zc +xa zb yc + y a xb zc + y a zb xc + za xb yc + za yb xc (IV.34)

We do not double count so, for example,

x2 y2z = x2 y2z +x2z2 y + y2z2x (IV.35)

(That is, we don’t count, say, y2x2z separately. This is only a technical point.) A monoic
monomial is determined by the exponents written in decreasing order, that is, (a1, . . . , an)
with a1 ≥ . . . ≥ an ≥ 0) or, for n = 3, simply (a,b,c) with a ≥ b ≥ c ≥ 0.

Any symmetric polynomial can be expressed as a linear combination of these so it suf-

fices (we are now doing only the case n = 3) to write xa yb zc in terms of s1, s2, s3. We actually
get the expression by reducing to simpler (more on that later) terms.

If a,b,c are positive, simply take out a common factor of s3 = x y z.
If a = b > 0 = c express

xa y a = (x y +xz +x y)a −∆ (IV.36)

As the other two parts are symmetric their difference ∆ is also symmetric. But all the terms
in ∆ have all three variables and so they can be reduced.

Example 5.0.23. With a = b = 2,c = 0:

(x2 y2 +x2z2 + y2z2) = (x y +xz + y z)2 −2x y z(x + y + z) (IV.37)
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If a > b > 0 = c express

xa yb = xb yb · xa−b +∆ (IV.38)

The polynomials xb yb and xa−b , being smaller, have already been done. Again, ∆, as the
difference of symmetric polynomials, is symmetric and again all terms in ∆ have all three
variables and so they can be reduced.

Example 5.0.24. With a = 5, b = 2, c = 0:

x5 y2 = (x2 y2 +x2z2 + y2z2)(x3 + y3 + z3)−x2 y2z2(x + y + z) (IV.39)

Finally when a > 0 = b = c = 0 we express

xa + y a + za = (x + y + z)a +∆ (IV.40)

Again ∆ is symmetric, and consists only of terms on two or three variables, which we have
already done.

Example 5.0.25. With a = 4, b = 0, c = 0:

x4 + y4 + z4 = (x + y + z)4 −4x3 y −6x2 y2 −12x y z(x + y + z) (IV.41)

There is a powerful consequence.

Theorem 5.0.26. Let L be any subfield of C. Let f (x) ∈ L[x] be a polynomial of degree n
with complex roots α1, . . . ,αn . (For multiple roots we repeat the root.) Then any symmetric
polynomial of α1, . . . ,αn is in L.

Proof. From Theorem 5.0.22 we write any symmetric polynomial in terms of the elementary
symmetric polynomials and their values are ± the coefficients of f (x), which are in L.

Example 5.0.27. Take L =Q (the main case we shall use) and let α,β,γ be the roots of f (x) =
x3 +x2 +2x +1. Consider κ=α3 +β3 +γ3. We express

κ= (α+β+γ)3 −3(α2β+·· ·+γ2β)−6αβγ (IV.42)

and further reduce

α2β+·· ·+γ2β) = (αβ+αγ+βγ)(α+β+γ)−3αβγ (IV.43)

We know α+β+γ=−1 and αβ+αγ+βγ= 2 and αβγ=−1 so α2β+ . . .+γ2β= 2(−1)−
3(−1) = 1 and so κ= (−1)3 −3(1)−6(−1) = 2.

Lets return to Theorem 5.0.22. How do we turn our arguments into a rigorous proof for
a general number of variables n. For each ~a = (a1, . . . , an) with a1 ≥ . . . an ≥ 0 let M M(~a)
denote the monic polynomial

M M(~a) = xa1
1 · · ·xan

n (IV.44)

We set D = D(~a) = a1 + . . . an and call D(~a) the degree of ~a. (Note it is the degree of the
associated monic polynomial. The idea is to subtract off from M M(~a) some combination
of elementary symmetric polynomials so as to be left with simpler forms. We define an
ordering on the possible ~a. Let ~a = (a1, . . . , an) and ~b = (b1, . . . ,bn) with a1 ≥ . . . an ≥ 0 and
b1 ≥ . . .bn ≥ 0.
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1. If D(~a) 6= D(~b) then the one with the smaller degree is called simpler.

2. Now suppose b1 + . . .+bn = a1 + . . .+ an . Let i be the smallest index (it may be that
i = 1) with ai 6= bi . If ai < bi we then say ~a is simpler than~b, else~b is simpler.

Among the ~a with the same sum of coordinates, simpler can be thought of as a lexicograph-
ical ordering of the possible vectors, thought of as words.

We want to show that, for any ~a, M M(~a) can be expressed in terms of the elementary
symmetric functions. We do this by a double induction, first on the degree D and then,
amongst those of a given degree D , in order of simplicity as given by (2) above. To start the
induction, for D = 1 the only vector is ~a = (1,0, . . . ,0) and M M(~a) = s1. Now suppose the
result is true for all~b of degree less than D and for all~b simpler than ~a. If an 6= 0 we reduce
by writing

M M(~a) = sn ·M M((a1 −1, . . . , an −1)) (IV.45)

That is, we take out the common factor of sn = x1 · · ·xn and are left with something of smaller
degree. Now we come to the main case. We write (we assume an = 0)

M M(~a) = sa1−a2
1 sa2−a3

2 · · · san−1−an
n−1 +∆ (IV.46)

Observe that the product on the RHS is a symmetric polynomial of degree D and so ∆ is a
symmetric polynomial of degree D and so we only have to check that all of the forms in ∆

are simpler than ~a.
We pause for an example. Consider n = 5 and~a = (10,7,4,0,0). Call the variables v, w, x, y, z

for convenience. Then (IV.46) becomes

v10w 7x4 = (v +w +x + y + z)3(v w + . . .+ y z)3(v w x + . . .+x y z)4 +∆ (IV.47)

Looking at the leftmost terms in the products on the right we get v3(v w)3(v w x)4 which is
precisely the v10w 7x4 that we want. The general term consists of three from v, . . . , z, three
from v w, . . . , y z and four from v w x, . . . , x y z. One such term would be taking

v, v, w ; v w, v w, w x, v w x, v w x, v w y, v w y

That gives v8w 8x3 y2 and, indeed, (8,8,3,2,0) is simpler than (10,7,4,0,0).
It may be helpful to think of the forms of these monomials in terms of balls in bins.

Imagine n bins labelled with the n variables x1, . . . , xn . The monomial polynomial M M(~a)
corresponds to placing ai balls in the bin marked xi Here is a picture corrsponding to the ~a
of the example.:

x
x
x
x x
x x
x x
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x x x
x x x
x x x
x x x
- - - - -
v w x y z

Now each term from si consists of i balls in i different bins. A term in the product con-
sists of placing i balls in i different bins ai −ai+1 times for 1 ≤ i ≤ n. In the example above
we have v8w 8x3 y2 as follows:

x
x

x
x x
x x

x x
x x x
x x x
x x x
x x x
- - - - -
v w x y z

The claim is that no matter how we place i balls in i different bins ai − ai+1 times for
1 ≤ i ≤ n we end up with a~b = (b1, . . . ,bn) which is simpler than ~a. First look at b1. We can
have at most one ball in a bin from each placement and so

b1 ≤ (a1 −a2)+ (a2 −a3)+ . . .+ (an−1 −an) = a1 (IV.48)

Now consider the total number of balls in two bins. We get at most two balls in the two bins
from each placement except that the placement of one ball (corresponding to the a1 − a2

factors of s1) gives only one ball in the two bins so

b1 +b2 ≤ (a1 −a2)+2(a2 −a3)+ . . .+2(an−1 −an) = a1 +a2 (IV.49)

In general, for 1 ≤ j ≤ n −1 consider the total number of balls in any j bins. When i ≤ j and
i balls are placed in i different bins there are at most i balls in those j bins while when i > j
there are at most j balls in thos j bins. Thus

j∑
k=1

bk ≤
j∑

i=1
i (ai −ai+1)+ j

n−1∑
i= j+1

(ai −ai+1) =
j∑

k=1
ak (IV.50)

But (IV.50), for 1 ≤ j ≤ n−1, implies~b is simpler than (or equal to)~a. If~b 6=~a let j denote the
first coordinate for which b j 6= a j . As bk = ak for k < j , (IV.50) for j gives b j ≤ a j .
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6 The Final Piece

Theorem 6.0.28. Let F ⊂ K be subfields ofCwith K a normal extension of F and G =Gal (K ,F ).
Let H be a subgroup of G and set L = K H . Then H =GL .

Proof. We already know H ⊂ GL . Set [K : L] = r , express K = L(α). Let p(x) ∈ L[x] be the
minimal polynomial of α. SetΛ= {α=α1, . . . ,αr }, the set of roots of p(x). Then we can write
H = {σ1, . . . ,σr } where each σi (α) =αi and σi permutes α1, . . . ,αr . If H is a proper subset of
GL write H = {I d =σ1, . . . ,σs} with s|r . Let t > 1 be such that st = r .

SetΛH = {σ1(α), . . . ,σs(α)}. These s elements are distinct as ifσi (α) =σ j (α) thenσ−1
i σ j (α) =

α which, as K = L(α), would imply σ−1
i σ j = e, or σi = σ j . Further, each of the σ ∈ H per-

mutes ΛH as for any σ ∈ H , σσ1, . . . ,σσs ranges over σ1, . . . ,σs . Therefore all symmetric
polynomials in ΛH are fixed by all σ ∈ H . But we are assuming that L = K H so any element
fixed by all σ ∈ H must be in L. Let u1, . . . ,us denote the values of the i -th symmetric poly-
nomials on α1, . . . ,αs . So these u1, . . . ,us ∈ L. But then α = α1 would satisfy the polynomial
xs −u1xs−1 + . . .+ (−1)sus which would be a polynomial in L[x] of degree s. This contradicts
that, as K = L(α), the minimal polynomial of α in L[x] has degree r .

This complete the Galois Correspondence Theorem 4.0.13. Theorem 6.0.28 can be re-
stated that for any subgroup H of G applying K (−) and then G(−) gets one back to H . Thus
K (−) and G(−) are inverses of each other and give a bijection as desired.

7 Cyclotomic Fields

Lets return to one of our original examples: K =Q(ε) with ε= e2πi /5.
The minimal polynomial for ε in Q[x] is (x5 −1)/(x −1) which has roots ε,ε2,ε3,ε4 which

all all in K . Thus K is the splitting field of that polynomial (over Q) and hence K is normal
overQ.

The Galois Group is (Z/5Z)× which is cyclic. Let σ ∈Gal (K ,F ) be determined by σ(ε) =
ε2. Then σ2(ε) = ε4 and σ3(ε) = ε8 = ε3 and σ4(ε) = ε16 = ε so σ4 = I d . There is one nontrivial
subgroup: H = {I d ,σ2}. From the Galois Correspondence theorem 4.0.13 this means there
is one nontrivial intermediate field Q⊂ L ⊂Q(ε) and L = K H . As 2 = |H | = [Q(ε) : L] we have
[L :Q] = 2, so L is a quadratic extension ofQ.

To find L we look for which α ∈ Q(ε) are in K H . As I d fixes all elements, α ∈ Q(ε) if and
only if σ2(α) =α. Writing α= a +bε+ cε2 +dε3 we must have

α=σ2(α) = a +bε4 + cε8 +dε12 = a +b(−1−ε−ε2 −ε3)+ cε3 +dε2 (IV.51)

Equating the coefficients using the basis 1,ε,ε2,ε3 yields the equation system: a = a −b,
b = −b, c = d −b, d = c −b which reduces to b = 0, c = d . Thus the elements of L may be
uniquely written as a + c(ε2 +ε3). Set κ= ε2 +ε3. As L =Q(κ), κ must satisfy a quadratic. We
find it by calculating κ2 = ε4 +2+ε= 1−ε2 −ε3. Then 1,κ,κ2 are dependent, more precisely
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κ2 = 1−κ. Solving the quadratic gives

κ= −1±p
5

2
(IV.52)

(The actual sign is minus, but this method doesn’t tell us that.) Thus we find L =Q(κ) =
Q(

p
5).

When p is an odd prime we can define K = Q(ε) with ε = e2πi /p . The minimal poly-
nomial for ε is p(x) = (xp − 1)/(x − 1) which has roots ε,ε2, . . . ,εp−1. Again, K is normal
over Q. The Galois Groups Gal (K ,F ) has automorphisms σi given by σi (ε) = εi for each
i ∈ Z∗

p and σiσ j = σi j where multiplication is done modulo p. Thus Gal (K ,F ) ∼= (Z/pZ)∗.
It is known that this is a cyclic group of order p − 1, so Gal (K ,F ) ∼= (Z/(p − 1)Z,+). This
group has a unique subgroup with half the elements, namely the multiples of 2 (thinking
of it as Z/(p −1)Z). Hence, by the Galois Correspondence Theorem 4.0.13 there is a unique
quadratic extension ofQ lying inside ofQ(ε).

Here is a way of finding the square root in Q(ε) for general odd prime p. Rather than the
usual basis 1,ε, . . . ,εp−1 we use the basis (Exercise: Show this is a basis.) ε,ε2, . . . ,εp−1. The
Galois Group Gal (Q(ε),Q) consists of σi for 1 ≤ i ≤ p − 1 where σi (ε) = εi . Associating σi

with i ∈ (Z/pZ)∗, the group is isomorphic to (Z/pZ)∗. The unique subgroup H of (Z/pZ)∗

of index 2 (that is, size (p − 1)/2) consists of the squares (modulo p). That is H has the
automorphisms σk2 for 1 ≤ k ≤ p − 1. (Each square appears twice so there are (p − 1)/2
elements of H . Now write an arbitrary element α ∈Q(ε) with the new basis as

α=
p−1∑
i=1

aiε
i (IV.53)

For α ∈ K H we need that for each k we have σk2 (α) =α. That is,

α=σk2 (α) =
p−1∑
i=1

aiε
k2i (IV.54)

Here as εp = 1 we can consider the exponent k2i as calculated in Z/pZ. Thus the condition
becomes

ai = ak2i for all i ,k ∈ (Z/pZ)∗ (IV.55)

But (IV.55) just says that ai is constant over the quadratic residues and constant (maybe a
different constant) over the quadratic nonresidues. (0 is special and is counted neither as
a quadratic residue nor as a quadratic nonresidue.) Let R, N ⊂ (Z/pZ)∗ denote the sets of
quadratic residues and quadratic nonresidues respectively. Set

κ= ∑
r∈R

εr = 1

2

p−1∑
k=1

εk2
(IV.56)

λ= ∑
r∈N

εr (IV.57)
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Then κ,λ form a basis for K H . It is convenient to note that

κ+λ=
p−1∑
r=1

εr =−1 (IV.58)

so
λ=−1−κ (IV.59)

and we can replace the basis κ,λ with the basis 1,κ. Thus

K H = {a +bκ : a,b ∈Q} (IV.60)

is the unique quadratic extension ofQ insideQ(ε). Thusκ satisfies a quadratic equation (and
is not itself rational) and one can write κ= a1+a2

p
d so that the unique quardatic extension

ofQ insideQ(ε) can be writtenQ(
p

d).
One can also find κ explicitly. From (IV.56) we find

κ2 = 1

4

p−1∑
x,y=1

εx2+y2
(IV.61)

This gets into some interesting number theory. For each r ∈Z/pZ one examines the number
of solutions to the equation x2 + y2 = r over Z/pZ with x, y 6= 0. Let r, s both be quadratic
residues. Then we can write s = r t 2. Each solution x2 + y2 = r corresponds to a solution of
x2

1 + y2
1 = s by setting x1 = xt , y1 = y t . We can go in the other direction, dividing a solution

by t . Thus there is a value, call it R. so that x2 + y2 = r has precisely R solutions for every
quadratic residue r . Now let r, s both be quadratic nonresidues. Again we can write r = st 2

and again the number solutions is the same. Thus there is value value, call it N . so that
x2 + y2 = r has precisely N solutions for every quadratic nonresidue r . Also, let Z be the
number of solutions to x2 + y2 = 0. We apply (IV.61) to find

κ2 = 1

4
[Z +Rκ+Nλ] = 1

4
[Z +Rκ+L(−1−κ)] = 1

4
[(Z −L)+ (R −L)κ] (IV.62)

which we can solve by the quadratic formula. Actually, we won’t know the choice of ± in the
quadratic formula, but in either case we getQ(κ) =Q(

p
d) for the same explicit d .

Example 7.0.29. Take p = 11 and ε = e2πi /11. The residues are 1,4,9,16 = 5,25 = 3 so the
nonresidues are 2,6,7,8,10. Then

κ= ε+ε3 +ε4 +ε5 +ε9 (IV.63)

Now consider the terms in κ2, always reducing the exponent modulo 11. We get (this is not
always the case!) no terms of ε0. We get 2ε3ε9 = 2ε1 as well as 2ε3,2ε4,2ε5,2ε9. For the non-
residues we get ε1ε1 +2ε4ε9 = 3ε2 as well as 3ε6,3ε7,3ε8,3ε10. Thus

κ2 = 2κ+3λ= 2κ+3(−1−κ) =−3−κ (IV.64)

68



so that

κ= −1±p−11

2
(IV.65)

The unique quadratic field insideQ(ε) is thereforeQ(
p−11).

When p = 5 the quadratic field was Q(
p

5) and when p = 11 the quadratic field was
Q(

p−11). Coincidence? No! The quadratic field will be Q(
p

p) when p is a prime of the
form 4k +1 and will beQ(

p−p) when p is a prime of the form 4k +3. But we’ll leave this nice
fact unproven.

8 Assorted Consequences

Suppose that an irreducible p(x) ∈Q[x] of degree n has complex roots α1, . . . ,αn and we set
K =Q(α1, . . . ,αn). Each σ ∈ Gal (K ,F ) permutes the roots though not every permutation of
the roots yields an automorphism σ.

Suppose ρ is a polynomial function of α1, . . . ,αn which is symmetric. Then every σ ∈
Gal (K ,F ) has σ(ρ) = ρ. Hence ρ ∈Q. As an example suppose a cubic p(x) ∈Q[x] has roots
α,β,γ and let

ρ = (α−β)2(α−γ)2(β−γ)2 (IV.66)

Any permutation of α,β,γ fixes ρ and hence ρ is a rational number. (FYI: this is called the
discriminant and generalizes the famous b2 −4aC term with quadratics.)

When ρ is not fully symmetric in α1, . . . ,αn there is still some information to be gleaned.
Suppose κ is fixed by the alternating group, the even permutations ofα1, . . . ,αn . If Gal (K ,F )
is contained in the alternating group then κ ∈Q as before. Otherwise, Gal (K ,F ) would have
more than n!/2 elements and so would be the full symmetric group ofα1, . . . ,αn . In that case
κwould not be inQ since it isn’t fixed by allσ ∈Gal (K ,F ). Letting H be the alternating group,
as |H | = |G|/2, [K H : Q] = 2. Then κ would be in a quadratic extension of Q. Continuing the
cubic example above, now set

κ= (α−β)(α−γ)(β−γ) (IV.67)

Assume Gal (K ,F ) ∼= S3. Of the six permutations ofα,β,γ, three send κ to itself and the other
three send κ to −κ (which is not κ as κ 6= 0 as α,β,γ are distinct). (For example, if α,β are
flipped and γ stays where it is then κ goes to −κ but if α goes to β which goes to γ which
goes to α then κ goes to κ.) Then [Q(κ) : Q] = 2 so κ can be expressed in terms of a square
root. Since, further, κ2 = ρ ∈Q, κ will be the square root of a rational number.
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